当前位置:   article > 正文

python 测试 多线程 _thread和threading模块 线程同步,线程优先级队列_yolo线程threading

yolo线程threading

python 多线程简介

多线程类似于同时执行多个不同程序,多线程运行有如下优点:

  • 使用线程可以把占据长时间的程序中的任务放到后台去处理。
  • 用户界面可以更加吸引人,这样比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进度条来显示处理的进度
  • 程序的运行速度可能加快
  • 在一些等待的任务实现上如用户输入、文件读写和网络收发数据等,线程就比较有用了。在这种情况下我们可以释放一些珍贵的资源如内存占用等等。
    线程在执行过程中与进程还是有区别的。每个独立的进程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。

每个线程都有他自己的一组CPU寄存器,称为线程的上下文,该上下文反映了线程上次运行该线程的CPU寄存器的状态。

指令指针和堆栈指针寄存器是线程上下文中两个最重要的寄存器,线程总是在进程得到上下文中运行的,这些地址都用于标志拥有线程的进程地址空间中的内存。

  • 线程可以被抢占(中断)。
  • 在其他线程正在运行时,线程可以暂时搁置(也称为睡眠) – 这就是线程的退让。

Python3 线程中常用的两个模块为:

  • _thread
  • threading(推荐使用)

thread 模块已被废弃。用户可以使用 threading 模块代替。所以,在 Python3 中不能再使用"thread" 模块。为了兼容性,Python3 将 thread 重命名为 “_thread”。

Python中使用线程的两种方式

1、函数式

调用thread模块中的start_new_thread()函数来产生新线程

_thread.start_new_thread ( function, args[, kwargs] )
  • 1

参数说明:

  • function - 线程函数。
  • args - 传递给线程函数的参数,他必须是个tuple类型。
  • kwargs - 可选参数。
示例
#!/usr/bin/python3

import _thread
import time

# 为线程定义一个函数
def print_time( threadName, delay):
   count = 0
   while count < 5:
      time.sleep(delay)
      count += 1
      print ("%s: %s" % ( threadName, time.ctime(time.time()) ))

# 创建两个线程
try:
   _thread.start_new_thread( print_time, ("Thread-1", 2, ) )
   _thread.start_new_thread( print_time, ("Thread-2", 4, ) )
except:
   print ("Error: 无法启动线程")

while 1:
   pass
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

结果:

Thread-1: Wed Apr  6 11:36:31 2016
Thread-1: Wed Apr  6 11:36:33 2016
Thread-2: Wed Apr  6 11:36:33 2016
Thread-1: Wed Apr  6 11:36:35 2016
Thread-1: Wed Apr  6 11:36:37 2016
Thread-2: Wed Apr  6 11:36:37 2016
Thread-1: Wed Apr  6 11:36:39 2016
Thread-2: Wed Apr  6 11:36:41 2016
Thread-2: Wed Apr  6 11:36:45 2016
Thread-2: Wed Apr  6 11:36:49 2016
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
2、线程模块

Python3 通过两个标准库 _thread 和 threading 提供对线程的支持。

_thread 提供了低级别的、原始的线程以及一个简单的锁,它相比于 threading 模块的功能还是比较有限的。

threading 模块除了包含 _thread 模块中的所有方法外,还提供的其他方法:

  • threading.currentThread(): 返回当前的线程变量。
  • threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
  • threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法:

  • run(): 用以表示线程活动的方法。
  • start():启动线程活动。
  • join([time]): 等待至线程中止。这阻塞调用线程直至线程的join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生。
  • isAlive(): 返回线程是否活动的。
  • getName(): 返回线程名。
  • setName(): 设置线程名。
示例

通过直接从 threading.Thread 继承创建一个新的子类,并实例化后调用 start() 方法启动新线程,即它调用了线程的 run() 方法:

#!/usr/bin/python3

import threading
import time

exitFlag = 0

class myThread (threading.Thread):
    def __init__(self, threadID, name, counter):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.counter = counter
    def run(self):
        print ("开始线程:" + self.name)
        print_time(self.name, self.counter, 5)
        print ("退出线程:" + self.name)

def print_time(threadName, delay, counter):
    while counter:
        if exitFlag:
            threadName.exit()
        time.sleep(delay)
        print ("%s: %s" % (threadName, time.ctime(time.time())))
        counter -= 1

# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# 开启新线程
thread1.start()
thread2.start()
thread1.join()
thread2.join()
print ("退出主线程")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

结果:

D:\20191031_tensorflow_yolov3\python\python.exe C:/Users/SIQI/Desktop/test_multiprocessing/test5.py
开始线程:Thread-1
开始线程:Thread-2
Thread-1: Tue Mar 24 14:10:36 2020
Thread-2: Tue Mar 24 14:10:37 2020
Thread-1: Tue Mar 24 14:10:37 2020
Thread-1: Tue Mar 24 14:10:38 2020
Thread-2: Tue Mar 24 14:10:39 2020
Thread-1: Tue Mar 24 14:10:39 2020
Thread-1: Tue Mar 24 14:10:40 2020
退出线程:Thread-1
Thread-2: Tue Mar 24 14:10:41 2020
Thread-2: Tue Mar 24 14:10:43 2020
Thread-2: Tue Mar 24 14:10:45 2020
退出线程:Thread-2
退出主线程

Process finished with exit code 0

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

线程同步

如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。

使用 Thread 对象的 Lock 和 Rlock 可以实现简单的线程同步,这两个对象都有 acquire 方法和 release 方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到 acquire 和 release 方法之间。如下:

多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。

考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。

那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。

经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。、

示例
#!/usr/bin/python3

import threading
import time


class myThread(threading.Thread):
    def __init__(self, threadID, name, counter):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.counter = counter

    def run(self):
        print("开启线程: " + self.name)
        # 获取锁,用于线程同步
        threadLock.acquire()
        print_time(self.name, self.counter, 3)
        # 释放锁,开启下一个线程
        threadLock.release()


def print_time(threadName, counter, delay):
    while counter:
        time.sleep(delay)
        print("%s: %s" % (threadName, time.ctime(time.time())))
        counter -= 1


threadLock = threading.Lock()
threads = []

# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# 开启新线程
thread1.start()
thread2.start()

# 添加线程到线程列表
threads.append(thread1)
threads.append(thread2)

# 等待所有线程完成
for t in threads:
    t.join()
print("退出主线程")

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

结果:

D:\20191031_tensorflow_yolov3\python\python.exe C:/Users/SIQI/Desktop/test_multiprocessing/test5.py
开启线程: Thread-1
开启线程: Thread-2
Thread-1: Tue Mar 24 15:16:19 2020
Thread-2: Tue Mar 24 15:16:22 2020
Thread-2: Tue Mar 24 15:16:25 2020
退出主线程

Process finished with exit code 0

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

线程优先级队列( Queue)【暂时没用到,没仔细看】

Python 的 Queue 模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列 PriorityQueue。

这些队列都实现了锁原语,能够在多线程中直接使用,可以使用队列来实现线程间的同步。

  • Queue 模块中的常用方法:

  • Queue.qsize() 返回队列的大小

  • Queue.empty() 如果队列为空,返回True,反之False

  • Queue.full() 如果队列满了,返回True,反之False

  • Queue.full 与 maxsize 大小对应

  • Queue.get([block[, timeout]])获取队列,timeout等待时间

  • Queue.get_nowait() 相当Queue.get(False)

  • Queue.put(item) 写入队列,timeout等待时间

  • Queue.put_nowait(item) 相当Queue.put(item, False)

  • Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号

  • Queue.join() 实际上意味着等到队列为空,再执行别的操作

示例
#!/usr/bin/python3

import queue
import threading
import time

exitFlag = 0

class myThread (threading.Thread):
    def __init__(self, threadID, name, q):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.q = q
    def run(self):
        print ("开启线程:" + self.name)
        process_data(self.name, self.q)
        print ("退出线程:" + self.name)

def process_data(threadName, q):
    while not exitFlag:
        queueLock.acquire()
        if not workQueue.empty():
            data = q.get()
            queueLock.release()
            print ("%s processing %s" % (threadName, data))
        else:
            queueLock.release()
        time.sleep(1)

threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = queue.Queue(10)
threads = []
threadID = 1

# 创建新线程
for tName in threadList:
    thread = myThread(threadID, tName, workQueue)
    thread.start()
    threads.append(thread)
    threadID += 1

# 填充队列
queueLock.acquire()
for word in nameList:
    workQueue.put(word)
queueLock.release()

# 等待队列清空
while not workQueue.empty():
    pass

# 通知线程是时候退出
exitFlag = 1

# 等待所有线程完成
for t in threads:
    t.join()
print ("退出主线程")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61

结果:

开启线程:Thread-1
开启线程:Thread-2
开启线程:Thread-3
Thread-3 processing One
Thread-1 processing Two
Thread-2 processing Three
Thread-3 processing Four
Thread-1 processing Five
退出线程:Thread-3
退出线程:Thread-2
退出线程:Thread-1
退出主线程
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

其他

threading.Thread类
Init signature:
threading.Thread(
    group=None,
    target=None,
    name=None,
    args=(),
    kwargs=None,
    *,
    daemon=None,
)
Docstring:     
A class that represents a thread of control. 
表示控制线程的类。

This class can be safely subclassed in a limited fashion. There are two ways
to specify the activity: by passing a callable object to the constructor, or
by overriding the run() method in a subclass.
可以通过有限的方式安全地将此类归为一类。 
有两种指定活动的方法:通过将可调用对象传递给构造函数,或通过重写子类中的run()方法。

Init docstring 初始化文档字符串:
This constructor should always be called with keyword arguments. 
始终应使用关键字参数调用此构造函数。

Arguments are:

*group* should be None; reserved for future extension when a ThreadGroup
class is implemented.
* group *应该为None; 当实现ThreadGroup类时保留给以后的扩展。

*target* is the callable object to be invoked by the run()
method. Defaults to None, meaning nothing is called.
* target *是run()方法要调用的可调用对象。 
* 默认为None(无),表示不执行任何操作。

*name* is the thread name. By default, a unique name is constructed of
the form "Thread-N" where N is a small decimal number.
* name *是线程名称。 
默认情况下,唯一名称的格式为“ Thread-N”,其中N是一个小十进制数字。

*args* is the argument tuple for the target invocation. Defaults to ().
* args *是目标调用的参数元组。 默认为()。

*kwargs* is a dictionary of keyword arguments for the target
invocation. Defaults to {}.
* kwargs *是用于目标调用的关键字参数的字典。 默认为{}。

If a subclass overrides the constructor, it must make sure to invoke
the base class constructor (Thread.__init__()) before doing anything
else to the thread.
如果子类覆盖了构造函数,则必须确保在对线程执行其他任何操作之前调用基类构造函数(Thread .__ init __())。
File:           d:\20191031_tensorflow_yolov3\python\lib\threading.py
Type:           type
Subclasses:     Timer, _MainThread, _DummyThread, HistorySavingThread, BackgroundJobBase, HBChannel, Heartbeat, ParentPollerUnix, ParentPollerWindows
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
1、最简单的线程程序
# 最简单的线程程序
def worker():
    print("working")
    print("finished")

t = threading.Thread(target=worker, name='worker')  # 线程对象
t.start()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

结果:

working
finished
  • 1
  • 2
2、while 循环内的线程
import threading
import time

def worker():
    while True:
          time.sleep(1)
          print("work")
    print("finished")

t = threading.Thread(target = worker, name='worker') # 线程对象

t.start()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

结果:

work
work
work
work
#...
  • 1
  • 2
  • 3
  • 4
  • 5
3、线程退出方法
import threading
import time


def worker():
    count = 0

    while True:
        if (count > 5):
            raise RuntimeError()

        time.sleep(1)
        print("working")
        count += 1


t = threading.Thread(target=worker, name='worker')  # 线程对象
t.start()
print("==END==")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

结果:

D:\20191031_tensorflow_yolov3\python\python.exe D:/20191031_tensorflow_yolov3/needed/test/test_Intel_realsense/test_多线程.py
==END==
working
working
working
working
working
working
Exception in thread worker:
Traceback (most recent call last):
  File "D:\20191031_tensorflow_yolov3\python\lib\threading.py", line 916, in _bootstrap_inner
    self.run()
  File "D:\20191031_tensorflow_yolov3\python\lib\threading.py", line 864, in run
    self._target(*self._args, **self._kwargs)
  File "D:/20191031_tensorflow_yolov3/needed/test/test_Intel_realsense/test_多线程.py", line 18, in worker
    raise RuntimeError()
RuntimeError


Process finished with exit code 0

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

参考文章1:python并发、并行、多线程及安全

参考文章2:【菜鸟教程】Python3 多线程

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/143475
推荐阅读
相关标签
  

闽ICP备14008679号