赞
踩
多线程类似于同时执行多个不同程序,多线程运行有如下优点:
每个线程都有他自己的一组CPU寄存器,称为线程的上下文,该上下文反映了线程上次运行该线程的CPU寄存器的状态。
指令指针和堆栈指针寄存器是线程上下文中两个最重要的寄存器,线程总是在进程得到上下文中运行的,这些地址都用于标志拥有线程的进程地址空间中的内存。
Python3 线程中常用的两个模块为:
thread 模块已被废弃。用户可以使用 threading 模块代替。所以,在 Python3 中不能再使用"thread" 模块。为了兼容性,Python3 将 thread 重命名为 “_thread”。
调用thread模块中的start_new_thread()函数来产生新线程
_thread.start_new_thread ( function, args[, kwargs] )
参数说明:
#!/usr/bin/python3 import _thread import time # 为线程定义一个函数 def print_time( threadName, delay): count = 0 while count < 5: time.sleep(delay) count += 1 print ("%s: %s" % ( threadName, time.ctime(time.time()) )) # 创建两个线程 try: _thread.start_new_thread( print_time, ("Thread-1", 2, ) ) _thread.start_new_thread( print_time, ("Thread-2", 4, ) ) except: print ("Error: 无法启动线程") while 1: pass
结果:
Thread-1: Wed Apr 6 11:36:31 2016
Thread-1: Wed Apr 6 11:36:33 2016
Thread-2: Wed Apr 6 11:36:33 2016
Thread-1: Wed Apr 6 11:36:35 2016
Thread-1: Wed Apr 6 11:36:37 2016
Thread-2: Wed Apr 6 11:36:37 2016
Thread-1: Wed Apr 6 11:36:39 2016
Thread-2: Wed Apr 6 11:36:41 2016
Thread-2: Wed Apr 6 11:36:45 2016
Thread-2: Wed Apr 6 11:36:49 2016
Python3 通过两个标准库 _thread 和 threading 提供对线程的支持。
_thread 提供了低级别的、原始的线程以及一个简单的锁,它相比于 threading 模块的功能还是比较有限的。
threading 模块除了包含 _thread 模块中的所有方法外,还提供的其他方法:
除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法:
通过直接从 threading.Thread 继承创建一个新的子类,并实例化后调用 start() 方法启动新线程,即它调用了线程的 run() 方法:
#!/usr/bin/python3 import threading import time exitFlag = 0 class myThread (threading.Thread): def __init__(self, threadID, name, counter): threading.Thread.__init__(self) self.threadID = threadID self.name = name self.counter = counter def run(self): print ("开始线程:" + self.name) print_time(self.name, self.counter, 5) print ("退出线程:" + self.name) def print_time(threadName, delay, counter): while counter: if exitFlag: threadName.exit() time.sleep(delay) print ("%s: %s" % (threadName, time.ctime(time.time()))) counter -= 1 # 创建新线程 thread1 = myThread(1, "Thread-1", 1) thread2 = myThread(2, "Thread-2", 2) # 开启新线程 thread1.start() thread2.start() thread1.join() thread2.join() print ("退出主线程")
结果:
D:\20191031_tensorflow_yolov3\python\python.exe C:/Users/SIQI/Desktop/test_multiprocessing/test5.py 开始线程:Thread-1 开始线程:Thread-2 Thread-1: Tue Mar 24 14:10:36 2020 Thread-2: Tue Mar 24 14:10:37 2020 Thread-1: Tue Mar 24 14:10:37 2020 Thread-1: Tue Mar 24 14:10:38 2020 Thread-2: Tue Mar 24 14:10:39 2020 Thread-1: Tue Mar 24 14:10:39 2020 Thread-1: Tue Mar 24 14:10:40 2020 退出线程:Thread-1 Thread-2: Tue Mar 24 14:10:41 2020 Thread-2: Tue Mar 24 14:10:43 2020 Thread-2: Tue Mar 24 14:10:45 2020 退出线程:Thread-2 退出主线程 Process finished with exit code 0
如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。
使用 Thread 对象的 Lock 和 Rlock 可以实现简单的线程同步,这两个对象都有 acquire 方法和 release 方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到 acquire 和 release 方法之间。如下:
多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。
考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。
那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。
锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。
经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。、
#!/usr/bin/python3 import threading import time class myThread(threading.Thread): def __init__(self, threadID, name, counter): threading.Thread.__init__(self) self.threadID = threadID self.name = name self.counter = counter def run(self): print("开启线程: " + self.name) # 获取锁,用于线程同步 threadLock.acquire() print_time(self.name, self.counter, 3) # 释放锁,开启下一个线程 threadLock.release() def print_time(threadName, counter, delay): while counter: time.sleep(delay) print("%s: %s" % (threadName, time.ctime(time.time()))) counter -= 1 threadLock = threading.Lock() threads = [] # 创建新线程 thread1 = myThread(1, "Thread-1", 1) thread2 = myThread(2, "Thread-2", 2) # 开启新线程 thread1.start() thread2.start() # 添加线程到线程列表 threads.append(thread1) threads.append(thread2) # 等待所有线程完成 for t in threads: t.join() print("退出主线程")
结果:
D:\20191031_tensorflow_yolov3\python\python.exe C:/Users/SIQI/Desktop/test_multiprocessing/test5.py
开启线程: Thread-1
开启线程: Thread-2
Thread-1: Tue Mar 24 15:16:19 2020
Thread-2: Tue Mar 24 15:16:22 2020
Thread-2: Tue Mar 24 15:16:25 2020
退出主线程
Process finished with exit code 0
Python 的 Queue 模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列 PriorityQueue。
这些队列都实现了锁原语,能够在多线程中直接使用,可以使用队列来实现线程间的同步。
Queue 模块中的常用方法:
Queue.qsize() 返回队列的大小
Queue.empty() 如果队列为空,返回True,反之False
Queue.full() 如果队列满了,返回True,反之False
Queue.full 与 maxsize 大小对应
Queue.get([block[, timeout]])获取队列,timeout等待时间
Queue.get_nowait() 相当Queue.get(False)
Queue.put(item) 写入队列,timeout等待时间
Queue.put_nowait(item) 相当Queue.put(item, False)
Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
Queue.join() 实际上意味着等到队列为空,再执行别的操作
#!/usr/bin/python3 import queue import threading import time exitFlag = 0 class myThread (threading.Thread): def __init__(self, threadID, name, q): threading.Thread.__init__(self) self.threadID = threadID self.name = name self.q = q def run(self): print ("开启线程:" + self.name) process_data(self.name, self.q) print ("退出线程:" + self.name) def process_data(threadName, q): while not exitFlag: queueLock.acquire() if not workQueue.empty(): data = q.get() queueLock.release() print ("%s processing %s" % (threadName, data)) else: queueLock.release() time.sleep(1) threadList = ["Thread-1", "Thread-2", "Thread-3"] nameList = ["One", "Two", "Three", "Four", "Five"] queueLock = threading.Lock() workQueue = queue.Queue(10) threads = [] threadID = 1 # 创建新线程 for tName in threadList: thread = myThread(threadID, tName, workQueue) thread.start() threads.append(thread) threadID += 1 # 填充队列 queueLock.acquire() for word in nameList: workQueue.put(word) queueLock.release() # 等待队列清空 while not workQueue.empty(): pass # 通知线程是时候退出 exitFlag = 1 # 等待所有线程完成 for t in threads: t.join() print ("退出主线程")
结果:
开启线程:Thread-1
开启线程:Thread-2
开启线程:Thread-3
Thread-3 processing One
Thread-1 processing Two
Thread-2 processing Three
Thread-3 processing Four
Thread-1 processing Five
退出线程:Thread-3
退出线程:Thread-2
退出线程:Thread-1
退出主线程
Init signature: threading.Thread( group=None, target=None, name=None, args=(), kwargs=None, *, daemon=None, ) Docstring: A class that represents a thread of control. 表示控制线程的类。 This class can be safely subclassed in a limited fashion. There are two ways to specify the activity: by passing a callable object to the constructor, or by overriding the run() method in a subclass. 可以通过有限的方式安全地将此类归为一类。 有两种指定活动的方法:通过将可调用对象传递给构造函数,或通过重写子类中的run()方法。 Init docstring 初始化文档字符串: This constructor should always be called with keyword arguments. 始终应使用关键字参数调用此构造函数。 Arguments are: *group* should be None; reserved for future extension when a ThreadGroup class is implemented. * group *应该为None; 当实现ThreadGroup类时保留给以后的扩展。 *target* is the callable object to be invoked by the run() method. Defaults to None, meaning nothing is called. * target *是run()方法要调用的可调用对象。 * 默认为None(无),表示不执行任何操作。 *name* is the thread name. By default, a unique name is constructed of the form "Thread-N" where N is a small decimal number. * name *是线程名称。 默认情况下,唯一名称的格式为“ Thread-N”,其中N是一个小十进制数字。 *args* is the argument tuple for the target invocation. Defaults to (). * args *是目标调用的参数元组。 默认为()。 *kwargs* is a dictionary of keyword arguments for the target invocation. Defaults to {}. * kwargs *是用于目标调用的关键字参数的字典。 默认为{}。 If a subclass overrides the constructor, it must make sure to invoke the base class constructor (Thread.__init__()) before doing anything else to the thread. 如果子类覆盖了构造函数,则必须确保在对线程执行其他任何操作之前调用基类构造函数(Thread .__ init __())。 File: d:\20191031_tensorflow_yolov3\python\lib\threading.py Type: type Subclasses: Timer, _MainThread, _DummyThread, HistorySavingThread, BackgroundJobBase, HBChannel, Heartbeat, ParentPollerUnix, ParentPollerWindows
# 最简单的线程程序
def worker():
print("working")
print("finished")
t = threading.Thread(target=worker, name='worker') # 线程对象
t.start()
结果:
working
finished
import threading
import time
def worker():
while True:
time.sleep(1)
print("work")
print("finished")
t = threading.Thread(target = worker, name='worker') # 线程对象
t.start()
结果:
work
work
work
work
#...
import threading import time def worker(): count = 0 while True: if (count > 5): raise RuntimeError() time.sleep(1) print("working") count += 1 t = threading.Thread(target=worker, name='worker') # 线程对象 t.start() print("==END==")
结果:
D:\20191031_tensorflow_yolov3\python\python.exe D:/20191031_tensorflow_yolov3/needed/test/test_Intel_realsense/test_多线程.py ==END== working working working working working working Exception in thread worker: Traceback (most recent call last): File "D:\20191031_tensorflow_yolov3\python\lib\threading.py", line 916, in _bootstrap_inner self.run() File "D:\20191031_tensorflow_yolov3\python\lib\threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "D:/20191031_tensorflow_yolov3/needed/test/test_Intel_realsense/test_多线程.py", line 18, in worker raise RuntimeError() RuntimeError Process finished with exit code 0
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。