赞
踩
摘要:
乳腺肿瘤分割是帮助我们描述和定位肿瘤区域的关键步骤之一。然而,乳腺肿瘤形态多变、边界模糊、强度分布相似,给乳腺肿瘤的准确分割带来了挑战。近年来,许多U-net变异体被提出并广泛用于乳腺肿瘤的分割。然而,这些体系结构有两个局限性:(1)忽略了基准网络的表征能力;(2)引入额外的复杂操作增加了理解和再现网络的难度。为了缓解这些挑战,本文提出了一种简单而功能强大的嵌套U-net (NU-net)来精确分割乳腺肿瘤。关键思想是利用不同深度和共享权重的U-Nets来实现乳腺肿瘤的鲁棒表征。NUnet主要有以下优点:(1)提高了网络对不同规模乳腺肿瘤的适应性和鲁棒性;(2)该方法易于重现和执行;(3)额外的运算增加了网络参数,而不会显著增加计算成本。在3个公开的乳腺超声数据集上使用12种最先进的分割方法进行的大量实验结果表明,NU-net对乳腺肿瘤的分割性能更具竞争力。进一步说明了NU-net在肾脏超声图像分割上的鲁棒性。源代码可在https://github.com/CGPxy/NU-net上公开获得。
1 介绍
乳腺癌是女性最可怕的癌症之一,严重威胁着女性的健康[1]。
目前,超声成像以其灵活、无害、成本低等优点被广泛应用于临床预筛查。从乳腺超声图像中分割病变区域对于肿瘤诊断和术后随访至关重要[2]-[4]。然而,复杂的超声图像、相似的强度分布、多变的肿瘤形态、模糊的边界给乳腺肿瘤的自动分割带来了很大的挑战[5],如图1所示。
图1所示。U-net和我们的方法对乳腺肿瘤的分割结果。从这些图像中可以看出,形态学变化,边界模糊,周围问题相似,严重影响了乳腺肿瘤,尤其是小肿瘤和恶性肿瘤的分割精度。
卷积神经网络(convolutional neural networks, cnn)由于其强大的非线性表征能力,已成功并广泛应用于医学图像分割[6]-[9]或自然图像分割[10]-[12]。其中,U-net[8]是医学图像分割中最成功的网络架构之一。它使用跳跃连接将编码器中的浅、低、细粒度特征映射与解码中的深、语义和粗粒度特征映射融合在一起,以提高网络的分割精度[13]。在此激励下,Almajalid等[14]首次使用U-net对增强和去噪的乳腺超声图像进行分割。
然而,这些预处理操作削弱了对象的空间结构,平滑了边缘。此外,原始的U-net不能处理周围组织和肿瘤形态的扰动,使其难以学习乳腺肿瘤的鲁棒表示为了进一步提高乳腺肿瘤的分割精度,人们开发了许多基于编码器-解码器架构的变体网络来分割乳腺肿瘤[15]-[19]。这些变体网络大致可分为多尺度U-net[20] -[23]、注意力优化U-net[24] -[28]、深度监督U-net[29] -[31]和多模块混合U-net[32] -[36]四种类型,如图2所示。已有研究表明,引入不同的策略(如残差学习、注意模块、多尺度、深度监督)可以提高U-net对乳腺肿瘤的分割性能[19]。然而,这些变体体系结构也受到两个明显的限制。
(A)的鲁棒性。
虽然这些附加操作的引入提高了乳腺肿瘤的分割精度,但它们并没有充分剖析基准网络的表征能力。因此,我们可以合理地假设,在具有良好表示能力的基准U-net中引入额外的操作可以获得更稳健的分割性能。
(B)的复杂性。
这些额外的操作不可避免地增加了网络的理解和再现的难度,这势必会阻碍网络的广泛应用。因此,我们需要建议的网络易于复制和实现。
为了解决上述局限性,我们开发了一个简单的嵌套U-net (NU-net)来提高乳腺肿瘤的分割精度。具体来说,我们首先利用更深的U-net(15层)作为基线网络。
然后,将开发的多出u网作为编码器和解码器之间的骨干嵌入。最后,利用基于多步降采样的三段短连接增强编码特征的长程信息的相关性。与U-net的各种网络相比,NU-net主要具有以下优点:
首先,NU-net没有复杂的组件,不会显著增加计算成本,易于复制和执行。
•其次,简单地增加基线U-net的深度可以显著提高乳腺肿瘤分割的准确性,并且优于许多变体网络。
•第三,嵌套的多出U-nets在细化编码特征映射的同时,进一步增强了细粒度特征和语义特征之间的相关性。
进一步提高了网络对不同规模乳腺肿瘤的适应性。
•此外,在公共乳腺超声数据集上的大量实验结果表明,NU-net在乳腺肿瘤分割方面具有更好的鲁棒性。
2. 相关工作
2.1 多尺度UNet
构建多尺度u型网络的一种常用方法是使用不同核大小的初始层[10]作为卷积层,如STAN[20]和ARFNet[22]。然而,Li等[37]指出,这种人为设计的多尺度卷积层不能自适应地提取不同尺度接受野下的客观信息。为了自适应捕捉乳腺肿瘤在不同感受野下的特征信息,Byra等[21]开发了一种选择性核U-net (SKU-net)来分割乳腺肿瘤。Chen等[23]指出SKU-net存在明显的局限性它只考虑通道维度上的特征选择。为了克服这一局限性,提出了一种自适应注意U-net (AAU-net),从通道和空间维度上自适应地选择不同感受野下的乳腺肿瘤特征[23]。AAU-net可
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。