当前位置:   article > 正文

【NLP】容纳众多优秀模型的自然语言处理库PyTorch-Transformers_should contains one of 'bert', 'openai-gpt', 'gpt2

should contains one of 'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet',

参考网站
公众号:深度学习视觉
NLP

前言

Github:Pytorch-transformers
该工具追求着这样的一个目标,几行代码调用最先进的模型,加载训练好的模型参数,来完成自然语言项目,比如机器翻译、文本摘要、问答系统等。Transformers 同时支持 PyTorch 和TensorFlow2.0,用户可以将这些工具放在一起使用。

支持模型

transformers目前提供以下NLU / NLG体系结构:
BERT、GPT、GPT-2、Transformer-XL、XLNet、XLM、RoBERTa、DistilBERT、CTRL、CamemBERT、ALBERT、T5、XLM-RoBERTa、MMBT、FlauBERT、其他社区的模型

安装PyTorch-Transformers

pip install pytorch-transformers
  • 1

使用GPT-2预测下一个单词

GPT-2是一种于基于transformer的生成语言模型,其语言生成能力优秀到被讨论禁止开源。该模型是在40GB的文本下进行无监督训练。

# 导入必要的库
import torch
from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel

# 加载预训练模型tokenizer (vocabulary)
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

# 对文本输入进行编码
text = "What is the fastest car in the"
indexed_tokens = tokenizer.encode(text)

# 在PyTorch张量中转换indexed_tokens
tokens_tensor = torch.tensor([indexed_tokens])

# 加载预训练模型 (weights)
model = GPT2LMHeadModel.from_pretrained('gpt2')

#将模型设置为evaluation模式,关闭DropOut模块
model.eval()

# 如果你有GPU,把所有东西都放在cuda上
tokens_tensor = tokens_tensor.to('cuda')
model.to('cuda')

# 预测所有的tokens
with torch.no_grad():
    outputs = model(tokens_tensor)
    predictions = outputs[0]

# 得到预测的单词
predicted_index = torch.argmax(predictions[0, -1, :]).item()
predicted_text = tokenizer.decode(indexed_tokens + [predicted_index])

# 打印预测单词
print(predicted_text)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

预测长文本

!git clone https://github.com/huggingface/pytorch-transformers.git
# 启动模型
!python pytorch-transformers/examples/run_generation.py \
    --model_type=gpt2 \
    --length=100 \
    --model_name_or_path=gpt2 \
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  1. 输入(本来是英文)

在一个令人震惊的发现中,科学家发现了一群独角兽,它们生活在安第斯山脉一个偏远的,以前未被开发的山谷中。对于研究人员而言,更令人惊讶的是,独角兽会说完美的英语。

  1. 输出(本来是英文)

独角兽似乎和普通人一样了解彼此。该研究于5月6日发表在《科学转化医学》上。此外,研究人员发现,百分之五的独角兽彼此之间具有很好的识别性。研究团队认为,这可能会转化为未来,使人类能够与称为超级独角兽的人进行更清晰的交流。如果我们要朝着那个未来前进,我们至少必须做到

除了GPT-2以外,还有诸如XLNet,一个在包括问答、自然语言推理、情感分析和文档排序等18项任务上取得了最先进结果的模型。

!python pytorch-transformers/examples/run_generation.py \
    --model_type=xlnet \
    --length=50 \
    --model_name_or_path=xlnet-base-cased \
  • 1
  • 2
  • 3
  • 4

还有能够学习长期依赖的Transformer-XL,比标准Transformer快1800倍。

!python pytorch-transformers/examples/run_generation.py \
    --model_type=transfo-xl \
    --length=100 \
    --model_name_or_path=transfo-xl-wt103 \
  • 1
  • 2
  • 3
  • 4

Transformers API调用

import torch
from transformers import *

# transformer有一个统一的API
# 有10个Transformer结构和30个预训练权重模型。
#模型|分词|预训练权重
MODELS = [(BertModel,       BertTokenizer,       'bert-base-uncased'),
          (OpenAIGPTModel,  OpenAIGPTTokenizer,  'openai-gpt'),
          (GPT2Model,       GPT2Tokenizer,       'gpt2'),
          (CTRLModel,       CTRLTokenizer,       'ctrl'),
          (TransfoXLModel,  TransfoXLTokenizer,  'transfo-xl-wt103'),
          (XLNetModel,      XLNetTokenizer,      'xlnet-base-cased'),
          (XLMModel,        XLMTokenizer,        'xlm-mlm-enfr-1024'),
          (DistilBertModel, DistilBertTokenizer, 'distilbert-base-cased'),
          (RobertaModel,    RobertaTokenizer,    'roberta-base'),
          (XLMRobertaModel, XLMRobertaTokenizer, 'xlm-roberta-base'),
         ]

# 要使用TensorFlow 2.0版本的模型,只需在类名前面加上“TF”,例如。“TFRobertaModel”是TF2.0版本的PyTorch模型“RobertaModel”

# 让我们用每个模型将一些文本编码成隐藏状态序列:
for model_class, tokenizer_class, pretrained_weights in MODELS:
    # 加载pretrained模型/分词器
    tokenizer = tokenizer_class.from_pretrained(pretrained_weights)
    model = model_class.from_pretrained(pretrained_weights)

    # 编码文本
    input_ids = torch.tensor([tokenizer.encode("Here is some text to encode", add_special_tokens=True)])  # 添加特殊标记
    with torch.no_grad():
        last_hidden_states = model(input_ids)[0]  # 模型输出是元组

# 每个架构都提供了几个类,用于对下游任务进行调优,例如。
BERT_MODEL_CLASSES = [BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction,
                      BertForSequenceClassification, BertForTokenClassification, BertForQuestionAnswering]

# 体系结构的所有类都可以从该体系结构的预训练权重开始
#注意,为微调添加的额外权重只在需要接受下游任务的训练时初始化

pretrained_weights = 'bert-base-uncased'
tokenizer = BertTokenizer.from_pretrained(pretrained_weights)
for model_class in BERT_MODEL_CLASSES:
    # 载入模型/分词器
    model = model_class.from_pretrained(pretrained_weights)

    # 模型可以在每一层返回隐藏状态和带有注意力机制的权值
    model = model_class.from_pretrained(pretrained_weights,
                                        output_hidden_states=True,
                                        output_attentions=True)
    input_ids = torch.tensor([tokenizer.encode("Let's see all hidden-states and attentions on this text")])
    all_hidden_states, all_attentions = model(input_ids)[-2:]

    #模型与Torchscript兼容
    model = model_class.from_pretrained(pretrained_weights, torchscript=True)
    traced_model = torch.jit.trace(model, (input_ids,))

    # 模型和分词的简单序列化
    model.save_pretrained('./directory/to/save/')  # 保存
    model = model_class.from_pretrained('./directory/to/save/')  # 重载
    tokenizer.save_pretrained('./directory/to/save/')  # 保存
    tokenizer = BertTokenizer.from_pretrained('./directory/to/save/')  # 重载
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
import tensorflow as tf
import tensorflow_datasets
from transformers import *

# 从预训练模型/词汇表中加载数据集、分词器、模型
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-cased')
data = tensorflow_datasets.load('glue/mrpc')

# 准备数据集作为tf.data.Dataset的实例
train_dataset = glue_convert_examples_to_features(data['train'], tokenizer, max_length=128, task='mrpc')
valid_dataset = glue_convert_examples_to_features(data['validation'], tokenizer, max_length=128, task='mrpc')
train_dataset = train_dataset.shuffle(100).batch(32).repeat(2)
valid_dataset = valid_dataset.batch(64)

# 准备训练:编写tf.keras模型与优化,损失和学习率调度
optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy')
model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

# 用tf.keras.Model.fit进行测试和评估
history = model.fit(train_dataset, epochs=2, steps_per_epoch=115,
                    validation_data=valid_dataset, validation_steps=7)

# 在PyTorch中加载TensorFlow模型进行检查
model.save_pretrained('./save/')
pytorch_model = BertForSequenceClassification.from_pretrained('./save/', from_tf=True)

#让我们看看我们的模型是否学会了这个任务
sentence_0 = "This research was consistent with his findings."
sentence_1 = "His findings were compatible with this research."
sentence_2 = "His findings were not compatible with this research."
inputs_1 = tokenizer.encode_plus(sentence_0, sentence_1, add_special_tokens=True, return_tensors='pt')
inputs_2 = tokenizer.encode_plus(sentence_0, sentence_2, add_special_tokens=True, return_tensors='pt')

pred_1 = pytorch_model(inputs_1['input_ids'], token_type_ids=inputs_1['token_type_ids'])[0].argmax().item()
pred_2 = pytorch_model(inputs_2['input_ids'], token_type_ids=inputs_2['token_type_ids'])[0].argmax().item()

print("sentence_1 is", "a paraphrase" if pred_1 else "not a paraphrase", "of sentence_0")
print("sentence_2 is", "a paraphrase" if pred_2 else "not a paraphrase", "of sentence_0")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/249497
推荐阅读
相关标签
  

闽ICP备14008679号