当前位置:   article > 正文

深度学习图像分类篇-3.2使用pytorch搭建AlexNet并训练花分类数据集_深度学习 pytorch 花朵分类

深度学习 pytorch 花朵分类

将数据集划分为训练集和验证集

下载花分类数据集:https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
新建data_set文件夹,在data_set中新建flower_data,在里面解压。
使用训练脚本将其划分为训练集和验证集:
回到data_set文件夹下,按住shift点击右键打开powershell,使用命令python .\split_data.py执行该文件。
在这里插入图片描述

model.py: 是模型文件

import torch.nn as nn
import torch


class AlexNet(nn.Module):   # 继承父类nn.Module
    def __init__(self, num_classes=1000, init_weights=False):   # 初始化函数,初始化网络在正向传播过程中需要的层结构
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(      # 将一系列的层结构打包
            nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2),  # input[3, 224, 224]  output[48, 55, 55]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[48, 27, 27]
            nn.Conv2d(48, 128, kernel_size=5, padding=2),           # output[128, 27, 27]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[128, 13, 13]
            nn.Conv2d(128, 192, kernel_size=3, padding=1),          # output[192, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 192, kernel_size=3, padding=1),          # output[192, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 128, kernel_size=3, padding=1),          # output[128, 13, 13]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[128, 6, 6]
        )       # 在这之后要将特征矩阵展平成一维向量,展品操作在forward函数中实现。
        self.classifier = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(128 * 6 * 6, 2048),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(2048, 2048),
            nn.ReLU(inplace=True),
            nn.Linear(2048, num_classes),
        )
        if init_weights:    # 初始化权重
            self._initialize_weights()

    def forward(self, x):
        x = self.features(x)
        x = torch.flatten(x, start_dim=1)   # 从index=1处开始展平,即第0维度的batch是不参与战平的
        x = self.classifier(x)
        return x

    # 其实这里不用我们对其初始化,因为在pytorch中默认在卷积和全连接层是自动用kaiming的初始化方法
    def _initialize_weights(self):
        for m in self.modules():    # 遍历self.modules模块,继承自nn.Module,会遍历我们定义的每个层结构
            if isinstance(m, nn.Conv2d):    # 判断层结构是否属于给定类型
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                # 用kaiming_normal的初始化变量方法对卷积权重w进行初始化
                if m.bias is not None:  # 如果偏置不为空的话,就用0对它初始化
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)  # 用正态分布初始化,均值为0,方差为0.01
                nn.init.constant_(m.bias, 0)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51

nn.Conv2d
(128,192,kernelsize=3,padding=1),

其中padding只能输入int或tuple。
例如tuple:(1,2)
1代表上下方各补一行零
2代表左右两侧各补两列零。

如果想要在左侧补一列,右侧补两列,使用nn.zeropad2d,见下方
nn.ZeroPad2d
在这里插入图片描述

实现左侧、上侧各补一列,右侧下侧各补两列。

train.py: 是调用模型训练的文件

这里先使用datasets.ImageFolder加载数据集,其第一个参数为路径,再使用torch.utils.data.DataLoader加载,其第一个参数为dataset。有一个类似呈递的关系。

import os
import sys
import json

import torch
import torch.nn as nn
from torchvision import transforms, datasets, utils
import matplotlib.pyplot as plt
import numpy as np
import torch.optim as optim
from tqdm import tqdm

from model import AlexNet


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))

    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),  # 标准化处理,使训练更容易。
        "val": transforms.Compose([transforms.Resize((224, 224)),  # cannot 224, must (224, 224)
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}

    data_root = os.path.abspath(os.path.join(os.getcwd(), "../.."))  # get data root path,os.getcwd()表示返回表示当前工作目录的unicode字符串(指当前项目的根目录),"../.."表示返回上上层目录,os.path.abspath(path)能得到一个文件的绝对路径。
    # 其实这里应该写错了,应该写成"../"
    image_path = os.path.join(data_root, "data_set", "flower_data")  # flower data set path
    assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
                                         transform=data_transform["train"])     # 用ImageFolder加载数据集,train_dataset的结构是:[(img_data,class_id),(img_data,class_id),…],每个部分都是由(tensor数据,index)组成。
    train_num = len(train_dataset)

    # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
    flower_list = train_dataset.class_to_idx
    cla_dict = dict((val, key) for key, val in flower_list.items())
    # 上面两行可以用下面的两行代码代替,也可以直接用cla_dict = train_dataset.classes代替?
    #     flower_list = train_dataset.classes
    #     cla_dict = dict((i, flower_list[i]) for i in range(len(flower_list)))
    # write dict into json file
    json_str = json.dumps(cla_dict, indent=4)   # 将字典编码成json的格式
    with open('class_indices.json', 'w') as json_file:  # 将上面得到的信息写入文件,方便在预测的时候读取它的信息
        json_file.write(json_str)

    batch_size = 32
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size, shuffle=True,
                                               num_workers=nw)  # 用dataloader载入数据集

    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
                                            transform=data_transform["val"])
    val_num = len(validate_dataset)
    validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                                  batch_size=batch_size, shuffle=False,
                                                  num_workers=nw)

    print("using {} images for training, {} images for validation.".format(train_num,
                                                                           val_num))

    # 如何查看我们的数据集
    # test_data_iter = iter(validate_loader)
    # test_image, test_label = test_data_iter.next()
    #
    # def imshow(img):
    #     img = img / 2 + 0.5  # unnormalize
    #     npimg = img.numpy()
    #     plt.imshow(np.transpose(npimg, (1, 2, 0)))
    #     plt.show()
    #
    # print(' '.join('%5s' % cla_dict[test_label[j].item()] for j in range(4)))
    # imshow(utils.make_grid(test_image))

    net = AlexNet(num_classes=5, init_weights=True)     # 实例创建的模型

    net.to(device)  # 将网络指定到上面所设置的设备上
    loss_function = nn.CrossEntropyLoss()   # 定义损失函数,使用针对多类别的损失交叉熵函数
    # pata = list(net.parameters()) # 调试用的,查看我们模型中的参数
    optimizer = optim.Adam(net.parameters(), lr=0.0002)     # 定义优化器adam,优化的对象是网络中可训练的参数

    epochs = 10
    save_path = './AlexNet.pth'     # 保存权重的路径
    best_acc = 0.0  # 定义最佳准确率
    train_steps = len(train_loader)
    for epoch in range(epochs):
        # train
        net.train()     # 只希望在训练过程中使用dropout,所以使用net.train和net.eval来管理dropout和bn层,使用net.train就会调用dropout方法
        running_loss = 0.0  # 用于累加损失值
        train_bar = tqdm(train_loader, file=sys.stdout)
        for step, data in enumerate(train_bar):
            images, labels = data
            optimizer.zero_grad()   # 梯度清零
            outputs = net(images.to(device))    # 开始正向传播,把训练的图像也指定到设备上,得到正向传播的输出
            loss = loss_function(outputs, labels.to(device))    # 计算预测值与真实值的损失
            loss.backward()     # 反向传播到每个节点当中
            optimizer.step()    # 更新每个节点的参数

            # print statistics
            running_loss += loss.item()     # 将loss的值累加

            train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                     epochs,
                                                                     loss)

        # validate
        net.eval()  # 使用net.eval就会关闭掉dropout方法
        acc = 0.0  # accumulate accurate number / epoch
        with torch.no_grad():   # 禁止pytorch对参数进行跟踪,在验证过程中不计算损失梯度
            val_bar = tqdm(validate_loader, file=sys.stdout)
            for val_data in val_bar:
                val_images, val_labels = val_data
                outputs = net(val_images.to(device))
                predict_y = torch.max(outputs, dim=1)[1]    # 求得输出的最大值作为预测值
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()  # 将预测正确的次数加到acc中

        val_accurate = acc / val_num    # 计算预测准确率
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))

        if val_accurate > best_acc:     # 保存准确率最高是模型的参数
            best_acc = val_accurate
            torch.save(net.state_dict(), save_path)

    print('Finished Training')


if __name__ == '__main__':
    main()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134

在这里插入图片描述

predict.py: 是调用模型进行预测的文件

import os
import json

import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from model import AlexNet


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    data_transform = transforms.Compose(
        [transforms.Resize((224, 224)),
         transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    # load image
    img_path = "../tulip.jpg"
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)

    plt.imshow(img)
    # [N, C, H, W]
    img = data_transform(img)   # 变成(C, H, W)
    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)   # 添加维度之后变成(N, C, H, W)

    # read class_indict
    json_path = './class_indices.json'
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)

    with open(json_path, "r") as f:     # 读取json文件
        class_indict = json.load(f)     # 解码,解成所需要的字典格式

    # create model
    model = AlexNet(num_classes=5).to(device)

    # load model weights
    weights_path = "./AlexNet.pth"
    assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
    model.load_state_dict(torch.load(weights_path))     # 载入网络模型

    model.eval()    # 关闭dropout
    with torch.no_grad():   # 不计算损失
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()     # 得到输出,并将batch维度压缩
        predict = torch.softmax(output, dim=0)  # 变为概率分布
        predict_cla = torch.argmax(predict).numpy()     # 获得概率最大处对应的索引

    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],
                                                 predict[predict_cla].numpy())
    plt.title(print_res)
    for i in range(len(predict)):
        print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],
                                                  predict[i].numpy()))
    plt.show()


if __name__ == '__main__':
    main()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64

class_indices.json: 是训练数据集对应的标签文件

知识点总结

  • os.path.abspath() 和os.getcwd()获取的文件路径并不是文件真实路径。
    os.path.abspath()和os.getcwd()
    返回的都是当前工作路径拼接文件名后的路径,并不一定真实存在,所以上面train代码中使用assert检查。
    即 filepath = os.path.join(os.path.abspath(‘.’),filename)
    os.path.abspath(‘.’)返回的即为当前工作路径
    而当前工作路径即是运行的.py文件的路径
    例子:
data_root = os.path.abspath(os.path.join("../..", "demo.py"))
print(data_root)
assert os.path.exists(data_root), "{} path does not exist.".format(data_root)

# F:\computer skills\Python\demo.py
# AssertionError: F:\computer skills\Python\demo.py path does not exist.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

虽然路径中没有这个文件,还是会生成这个路径,不是真实存在的。

参考:https://blog.csdn.net/qq_33716688/article/details/89333856

  • assert断言函数
    assert os.path.exists(data_root), “{} path does not exist.”.format(data_root),逗号前面为TRUE时不报错,为false报错,后面为报错内容

  • tqdm就是设置进度条将处理情况进行可视化展示,对于可以迭代的对象都可以使用tqdm进行封装实现可视化进度。

train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1, epochs, loss)
  • 1

上面的代码信息显示在进度条前方。
在这里插入图片描述

  • sys.stdout是python中的标准输出流,默认是映射到控制台的,即将信息打印到控制台。
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/267668
推荐阅读
相关标签
  

闽ICP备14008679号