赞
踩
Flutter中widget、state、element的源码位于framework.dart中,整个文件6693行(版本Flutter 3.12.0-14.0.pre.28)。整个代码可划分为若干部分,主要包括key、widget、state、element四部分。
关于key的代码65行到272行,这里的key包括ObjectKey、GlobalKey、LabeledGlobalKey、GlobalObjectKey。整个key体系的代码还包括key.dart这个文件,里面包括Key、LocalKey、UniqueKey和ValueKey。Key是GlobalKey和LocalKey的抽象基类。LabeledGlobalKey和GlobalObjectKey是GlobalKey的抽象子类。ObjectKey、UniqueKey和ValueKey是LocalKey的三个具体子类。
关于widget的代码274行到1922行。包括10个抽象类:Widget、StatelessWidget、StatefulWidget、ProxyWidget、ParentDataWidget、InheritedWidget、RenderObjectWidget、LeafRenderObjectWidget、SingleChildRenderObjectWidget、MultiChildRenderObjectWidget。这些类,大体可以把Widget分为组合式、渲染、功能性三种。
State的代码在823附近。State是一个抽象类。State首先起着一个枢纽的作用,它持有widget,也持有element。从state里获取context,只是简单返回持有的element。另一方面,State对外提供了widget的生命周期:initState、didUpdateWidget、reassemble、deactivate、activate、dispose、didChangeDependencies。这些生命周期方法是系统提供给我们的钩子。如果我们要主动发起渲染请求的话,就要调用State提供给我们的setState方法。而build则是我们告诉系统如何渲染这个widget的地方。前者提供时机,后者提供内容。
BuildContext是一个抽象类,代码位于2129-2485行。Element实现了BuildContext。
BuildOwner位于2511-3168行。
element相关的代码位于3259行到6597行之间。接近一半的代码量,可以看出element是核心部分。
Widget是一个抽象类,里面关键的三个东西:
- final Key? key;
-
- Element createElement();
-
- static bool canUpdate(Widget oldWidget, Widget newWidget) {
- return oldWidget.runtimeType == newWidget.runtimeType
- && oldWidget.key == newWidget.key;
- }
我们要关注下canUpdate这个方法的实现,决定我们能否复用这个widget是由这个widget的runtimeType和key决定的。runtimeType表明了widget的类型,不同类型的widget是不能复用的。key是我们人为指定的一个值,它可以在同类型widget之间产生个体差异,以便我们或者渲染系统找到它。不设置的时候就是null,这时候只比较runtimeType就行。
我们先来介绍widget中的组合式子类:StatelessWidget和StatefulWidget。StatelessWidget创建的element是StatelessElement:
- @override
- StatelessElement createElement() => StatelessElement(this);
而StatefulWidget创建的是StatefulElement,并且还能创建state:
- @override
- StatefulElement createElement() => StatefulElement(this);
-
- @protected
- @factory
- State createState();
StatelessWidget和StatefulWidget仍然是抽象类,需要我们子类化。根据源码,我们发现StatefulWidget和StatelessWidget只负责创建对应element,并不持有它。而Statefulwidget只负责创建state,同样也并不持有它。
RenderObjectWidget有三个抽象子类LeafRenderObjectWidget、SingleChildRenderObjectWidget、MultiChildRenderObjectWidget。分别代表了没有孩子、只有一个孩子和有多个孩子的三种RenderObjectWidget。源码我们不再展开,想必你也猜到了是一个啥都没,一个有个child,最后一个有个children属性罢了。
相比于前面的StatelessWidget,RenderObjectWidget返回自己独特的RenderObjectElement,并且还多了一个RenderObject:
- RenderObject createRenderObject(BuildContext context);
-
-
- @protected
- void updateRenderObject(BuildContext context, covariant RenderObject renderObject) { }
-
-
- @protected
- void didUnmountRenderObject(covariant RenderObject renderObject) { }
RenderObjectWidget我们后面在RenderObjectElement的performRebuild里讲到了,它会调用updateRenderObject进行更新。这里我们无法展开讲updateRenderObject,需要去看具体子类里的实现。
我们以SingleChildRenderObjectWidget的一个具体子类ColoredBox为例:
- final Color color;
-
- @override
- RenderObject createRenderObject(BuildContext context) {
- return _RenderColoredBox(color: color);
- }
-
- @override
- void updateRenderObject(BuildContext context, RenderObject renderObject) {
- (renderObject as _RenderColoredBox).color = color;
- }
我们发现它创建的RenderObject是一个私有类_RenderColoredBox。而我们前面提到的updateRenderObject在这里只是设置一下新的颜色。
我们再转去看_RenderColoredBox的实现:
- class _RenderColoredBox extends RenderProxyBoxWithHitTestBehavior {
- _RenderColoredBox({ required Color color })
- : _color = color,
- super(behavior: HitTestBehavior.opaque);
-
- /// The fill color for this render object.
- ///
- /// This parameter must not be null.
- Color get color => _color;
- Color _color;
- set color(Color value) {
- if (value == _color) {
- return;
- }
- _color = value;
- markNeedsPaint();
- }
-
- @override
- void paint(PaintingContext context, Offset offset) {
- // It's tempting to want to optimize out this `drawRect()` call if the
- // color is transparent (alpha==0), but doing so would be incorrect. See
- // https://github.com/flutter/flutter/pull/72526#issuecomment-749185938 for
- // a good description of why.
- if (size > Size.zero) {
- context.canvas.drawRect(offset & size, Paint()..color = color);
- }
- if (child != null) {
- context.paintChild(child!, offset);
- }
- }
- }
主要是根据颜色在canvas上绘制背景色和child。设置新颜色会引起markNeedsPaint。markNeedsPaint相关代码在RenderObject里。
- void markNeedsPaint() {
-
- if (_needsPaint) {
- return;
- }
- _needsPaint = true;
- // If this was not previously a repaint boundary it will not have
- // a layer we can paint from.
- if (isRepaintBoundary && _wasRepaintBoundary) {
-
- if (owner != null) {
- owner!._nodesNeedingPaint.add(this);
- owner!.requestVisualUpdate();
- }
- } else if (parent is RenderObject) {
- parent!.markNeedsPaint();
- } else {
-
- // If we are the root of the render tree and not a repaint boundary
- // then we have to paint ourselves, since nobody else can paint us.
- // We don't add ourselves to _nodesNeedingPaint in this case,
- // because the root is always told to paint regardless.
- //
- // Trees rooted at a RenderView do not go through this
- // code path because RenderViews are repaint boundaries.
- if (owner != null) {
- owner!.requestVisualUpdate();
- }
- }
- }
这里出现了新的Owner:PipelineOwner。markNeedsPaint标记自己需要重新绘制,如果自己是绘制边界,就把自己加入需要绘制的节点列表里。如果不是绘制边界,就调用父节点的markNeedsPaint。这里只是简单标记和放入列表,真正执行绘制的时机是在WidgetsBinding.drawFrame里的flushPaint:
- void drawFrame() {
- buildOwner!.buildScope(renderViewElement!); // 1.重新构建widget
- super.drawFrame();
- //下面几个是在super.drawFrame()执行的
- pipelineOwner.flushLayout(); // 2.更新布局
- pipelineOwner.flushCompositingBits(); //3.更新“层合成”信息
- pipelineOwner.flushPaint(); // 4.重绘
- if (sendFramesToEngine) {
- renderView.compositeFrame(); // 5. 上屏,将绘制出的bit数据发送给GPU
- }
- }
上面的代码里,我们也看到了布局是在这之前的flushLayout执行的。RenderBox源码里PipelineOwner通过markNeedsLayout标记、收集需要布局节点:
- void markNeedsLayout() {
-
- if (_needsLayout) {
-
- return;
- }
- if (_relayoutBoundary == null) {
- _needsLayout = true;
- if (parent != null) {
- // _relayoutBoundary is cleaned by an ancestor in RenderObject.layout.
- // Conservatively mark everything dirty until it reaches the closest
- // known relayout boundary.
- markParentNeedsLayout();
- }
- return;
- }
- if (_relayoutBoundary != this) {
- markParentNeedsLayout();
- } else {
- _needsLayout = true;
- if (owner != null) {
- owner!._nodesNeedingLayout.add(this);
- owner!.requestVisualUpdate();
- }
- }
- }
-
- void markParentNeedsLayout() {
- assert(_debugCanPerformMutations);
- _needsLayout = true;
- assert(this.parent != null);
- final RenderObject parent = this.parent!;
- if (!_doingThisLayoutWithCallback) {
- parent.markNeedsLayout();
- } else {
- assert(parent._debugDoingThisLayout);
- }
- assert(parent == this.parent);
- }
我们发现布局标记和绘制标记的实现是类似的,都需要标记自身,都需要向上寻找布局或者绘制的边界。PipelineOwner最终对其调用performLayout和markNeedsPaint:
- void flushLayout() {
-
- try {
- while (_nodesNeedingLayout.isNotEmpty) {
- final List<RenderObject> dirtyNodes = _nodesNeedingLayout;
- _nodesNeedingLayout = <RenderObject>[];
- dirtyNodes.sort((RenderObject a, RenderObject b) => a.depth - b.depth);
- for (int i = 0; i < dirtyNodes.length; i++) {
- if (_shouldMergeDirtyNodes) {
- _shouldMergeDirtyNodes = false;
- if (_nodesNeedingLayout.isNotEmpty) {
- _nodesNeedingLayout.addAll(dirtyNodes.getRange(i, dirtyNodes.length));
- break;
- }
- }
- final RenderObject node = dirtyNodes[i];
- if (node._needsLayout && node.owner == this) {
- node._layoutWithoutResize();
- }
- }
- // No need to merge dirty nodes generated from processing the last
- // relayout boundary back.
- _shouldMergeDirtyNodes = false;
- }
-
-
- for (final PipelineOwner child in _children) {
- child.flushLayout();
- }
-
-
- } finally {
- _shouldMergeDirtyNodes = false;
-
- }
- }
-
-
-
- void _layoutWithoutResize() {
-
- RenderObject? debugPreviousActiveLayout;
- try {
- performLayout();
- markNeedsSemanticsUpdate();
- } catch (e, stack) {
- _reportException('performLayout', e, stack);
- }
- _needsLayout = false;
- markNeedsPaint();
- }
performLayout这个方法在RenderBox里实现为空,需要子类自行实现。
前面ColoredBox这个例子里我们在updateRenderObject里改变颜色并不会引起布局变化。现在我们找一个RenderPositionedBox的源码来看看。
RenderPositionedBox是Align使用的renderObject。我们看看它的updateRenderObject实现:
- void updateRenderObject(BuildContext context, RenderPositionedBox renderObject) {
- renderObject
- ..alignment = alignment
- ..widthFactor = widthFactor
- ..heightFactor = heightFactor
- ..textDirection = Directionality.maybeOf(context);
- }
再进到RenderPositionedBox的set alignment实现:
- set alignment(AlignmentGeometry value) {
- if (_alignment == value) {
- return;
- }
- _alignment = value;
- _markNeedResolution();
- }
-
- void _markNeedResolution() {
- _resolvedAlignment = null;
- markNeedsLayout();
- }
我们发现设置新的alignment,会引起markNeedsLayout的调用。
暂不展开,详见透过源码理解Flutter InheritedWidget_Mamong的博客-CSDN博客
我们再跳到StatelessElement构造方法:
-
- class StatelessElement extends ComponentElement {
- /// Creates an element that uses the given widget as its configuration.
- StatelessElement(StatelessWidget super.widget);
-
- @override
- Widget build() => (widget as StatelessWidget).build(this);
- }
StatelessElement自身可以通过build返回子element对应的widget。
而StatefulElement构造方法:
- /// Creates an element that uses the given widget as its configuration.
- StatefulElement(StatefulWidget widget)
- : _state = widget.createState(),
- super(widget) {
- state._element = this;
- state._widget = widget;
- }
我们发现在创建element的时候,会先调用widget的createState创建state,并指向它,然后state就伸出两只手,一只手拉着widget,另一只手拉着element。element里面有一个重要的方法:
Widget build() => state.build(this);
这里我们可以认为state build出来的是element持有的widget的“child”。事实上,无论StatelessElement还是Statefulwidget,它们都没child这个概念,但是对应的element是有一个child的属性的。所以我们姑且这么看待它们的关系。这里把element传进去,只是因为我们可能需要用到element树一些上下文信息。
现在看看我们的老朋友,state里的setState方法的实现:
- void setState(VoidCallback fn) {
- _element!.markNeedsBuild();
- }
-
-
- void markNeedsBuild() {
- if (dirty) {
- return;
- }
- _dirty = true;
- owner!.scheduleBuildFor(this);
- }
-
- void scheduleBuildFor(Element element) {
- _dirtyElements.add(element);
- element._inDirtyList = true;
- }
-
- void rebuild() {
- performRebuild();
- }
-
- void performRebuild() {
- _dirty = false;
- }
完整的流程如下:
中间省略一些代码,我们直接跳到performRebuild实现。对于基类Element的实现,只是简单标记为dirty。Element分为渲染和组件两种类型,前者与渲染相关,后者用于组成其他element。
对于跟渲染相关的RenderObjectElement的performRebuild,则需要更新它的renderObject:
- void _performRebuild() {
- (widget as RenderObjectWidget).updateRenderObject(this, renderObject);
- super.performRebuild(); // clears the "dirty" flag
- }
对于跟组件相关的ComponentElement的performRebuild实现:
- void performRebuild() {
- Widget? built;
- try {
- built = build();
- } catch (e, stack) {
-
- } finally {
- // We delay marking the element as clean until after calling build() so
- // that attempts to markNeedsBuild() during build() will be ignored.
- super.performRebuild(); // clears the "dirty" flag
- }
- try {
- _child = updateChild(_child, built, slot);
- } catch (e, stack) {
- _child = updateChild(null, built, slot);
- }
- }
这里的核心是会调用build方法创建新的widget,然后使用这个widget去更新child element。从前面的代码中我们可以看到statefulElement和statelessElement的build实现是有差异的。但是返回的widget,其实都是它们的child对应的widget。在多个渲染周期,child element会一直存在,而需要更新时widget就会重新创建。更新后的Element设置为当前Element的child。至于怎么更新,我们等下再讲。
ComponentElement是ProxyElement、StatefulElement和StatelessElement的父类。但是只有StatefulElement覆写了performRebuild。进一步来到StatefulElement的performRebuild实现:
- void performRebuild() {
- if (_didChangeDependencies) {
- state.didChangeDependencies();
- _didChangeDependencies = false;
- }
- super.performRebuild();
- }
StatefulElement增加的任务是如果依赖发生了变化,要触发state的didChangeDependencies方法。
回到前文,我们再来看Element的updateChild实现:
- Element? updateChild(Element? child, Widget? newWidget, Object? newSlot) {
- // 如果'newWidget'为null,而'child'不为null,那么我们删除'child',返回null。
- if (newWidget == null) {
- if (child != null) {
- deactivateChild(child);
- }
- return null;
- }
-
- final Element newChild;
- if (child != null) {
- // 两个widget相同,位置不同更新位置。先更新位置,然后返回child。这里比较的是hashCode
- if (child.widget == newWidget) {
- if (child.slot != newSlot) {
- updateSlotForChild(child, newSlot);
- }
- newChild = child;
- } else if (Widget.canUpdate(child.widget, newWidget)) {
- //两个widget不同,但是可以复用。位置不同则先更新位置。然后用新widget更新element
- if (child.slot != newSlot) {
- updateSlotForChild(child, newSlot);
- }
- child.update(newWidget);
- newChild = child;
- } else {
- // 如果无法更新复用,那么删除原来的child,然后创建一个新的Element并返回。
- deactivateChild(child);
- newChild = inflateWidget(newWidget, newSlot);
- }
- } else {
- // 如果是初次创建,那么创建一个新的Element并返回。
- newChild = inflateWidget(newWidget, newSlot);
- }
-
- return newChild;
- }
这里关键的两个方法是update和inflateWidget。
对于不同类型的child的update方法是不一样的。基类Element只是用新的替换旧的而已:
- void update(covariant Widget newWidget) {
- _widget = newWidget;
- }
对于StatelessElement的update,就是直接更换widget:
- @override
- void update(StatelessWidget newWidget) {
- //直接更换widget
- super.update(newWidget);
- assert(widget == newWidget);
- rebuild(force: true);
- }
对于StatefulElement的update,除了更换widget,还要更换state指向的widget:
- void update(StatefulWidget newWidget) {
- super.update(newWidget);
-
- final StatefulWidget oldWidget = state._widget!;
- state._widget = widget as StatefulWidget;
- final Object? debugCheckForReturnedFuture = state.didUpdateWidget(oldWidget) as dynamic;
- rebuild(force: true);
- }
最后都通过调用rebuild,标记自身dirty。
对于SingleChildRenderObjectElement就是对它的child调用updateChild,对于MultiChildRenderObjectElement就是对它的children调用updateChildren:
- void update(SingleChildRenderObjectWidget newWidget) {
- super.update(newWidget);
- _child = updateChild(_child, (widget as SingleChildRenderObjectWidget).child, null);
- }
-
- void update(MultiChildRenderObjectWidget newWidget) {
- super.update(newWidget);
- final MultiChildRenderObjectWidget multiChildRenderObjectWidget = widget as MultiChildRenderObjectWidget;
- _children = updateChildren(_children, multiChildRenderObjectWidget.children, forgottenChildren: _forgottenChildren);
- _forgottenChildren.clear();
- }
而对于ProxyElement主要是更新widget和通知:
- @override
- void update(ProxyWidget newWidget) {
- final ProxyWidget oldWidget = widget as ProxyWidget;
- //使用新的widget更新持有的widget
- super.update(newWidget);
- //通知其他关联widget自己发生了变化
- updated(oldWidget);
- //标记dirty
- rebuild(force: true);
- }
-
- @protected
- void updated(covariant ProxyWidget oldWidget) {
- notifyClients(oldWidget);
- }
updateChild前面我们已经提到了,而对于updateChildren的实现:
- List<Element> updateChildren(List<Element> oldChildren, List<Widget> newWidgets, { Set<Element>? forgottenChildren, List<Object?>? slots }) {
-
- Element? replaceWithNullIfForgotten(Element child) {
- return forgottenChildren != null && forgottenChildren.contains(child) ? null : child;
- }
-
- Object? slotFor(int newChildIndex, Element? previousChild) {
- return slots != null
- ? slots[newChildIndex]
- : IndexedSlot<Element?>(newChildIndex, previousChild);
- }
-
- // This attempts to diff the new child list (newWidgets) with
- // the old child list (oldChildren), and produce a new list of elements to
- // be the new list of child elements of this element. The called of this
- // method is expected to update this render object accordingly.
-
- // The cases it tries to optimize for are:
- // - the old list is empty
- // - the lists are identical
- // - there is an insertion or removal of one or more widgets in
- // only one place in the list
- // If a widget with a key is in both lists, it will be synced.
- // Widgets without keys might be synced but there is no guarantee.
-
- // The general approach is to sync the entire new list backwards, as follows:
- // 1. Walk the lists from the top, syncing nodes, until you no longer have
- // matching nodes.
- // 2. Walk the lists from the bottom, without syncing nodes, until you no
- // longer have matching nodes. We'll sync these nodes at the end. We
- // don't sync them now because we want to sync all the nodes in order
- // from beginning to end.
- // At this point we narrowed the old and new lists to the point
- // where the nodes no longer match.
- // 3. Walk the narrowed part of the old list to get the list of
- // keys and sync null with non-keyed items.
- // 4. Walk the narrowed part of the new list forwards:
- // * Sync non-keyed items with null
- // * Sync keyed items with the source if it exists, else with null.
- // 5. Walk the bottom of the list again, syncing the nodes.
- // 6. Sync null with any items in the list of keys that are still
- // mounted.
-
- int newChildrenTop = 0;
- int oldChildrenTop = 0;
- int newChildrenBottom = newWidgets.length - 1;
- int oldChildrenBottom = oldChildren.length - 1;
-
- final List<Element> newChildren = List<Element>.filled(newWidgets.length, _NullElement.instance);
-
- Element? previousChild;
-
- // 从前往后依次对比,相同的更新Element,记录位置,直到不相等时跳出循环。.
- while ((oldChildrenTop <= oldChildrenBottom) && (newChildrenTop <= newChildrenBottom)) {
- final Element? oldChild = replaceWithNullIfForgotten(oldChildren[oldChildrenTop]);
- final Widget newWidget = newWidgets[newChildrenTop];
-
- // 注意这里的canUpdate,本例中在没有添加key时返回true。
- // 因此直接执行updateChild,本循环结束返回newChildren。后面因条件不满足都在不执行。
- // 一旦添加key,这里返回false,不同之处就此开始。
- if (oldChild == null || !Widget.canUpdate(oldChild.widget, newWidget)) {
- break;
- }
- final Element newChild = updateChild(oldChild, newWidget, slotFor(newChildrenTop, previousChild))!;
-
- newChildren[newChildrenTop] = newChild;
- previousChild = newChild;
- newChildrenTop += 1;
- oldChildrenTop += 1;
- }
-
- // 从后往前依次对比,记录位置,直到不相等时跳出循环。
- while ((oldChildrenTop <= oldChildrenBottom) && (newChildrenTop <= newChildrenBottom)) {
- final Element? oldChild = replaceWithNullIfForgotten(oldChildren[oldChildrenBottom]);
- final Widget newWidget = newWidgets[newChildrenBottom];
-
-
- if (oldChild == null || !Widget.canUpdate(oldChild.widget, newWidget)) {
- break;
- }
- oldChildrenBottom -= 1;
- newChildrenBottom -= 1;
- }
-
- // 至此,就可以得到新旧List中不同Weiget的范围。
- final bool haveOldChildren = oldChildrenTop <= oldChildrenBottom;
- Map<Key, Element>? oldKeyedChildren;
- // 如果存在中间范围,扫描旧children,获取所有的key与Element保存至oldKeyedChildren。
- if (haveOldChildren) {
- oldKeyedChildren = <Key, Element>{};
- while (oldChildrenTop <= oldChildrenBottom) {
- final Element? oldChild = replaceWithNullIfForgotten(oldChildren[oldChildrenTop]);
-
-
- if (oldChild != null) {
- if (oldChild.widget.key != null) {
- oldKeyedChildren[oldChild.widget.key!] = oldChild;
- } else {
- deactivateChild(oldChild);
- }
- }
- oldChildrenTop += 1;
- }
- }
-
- // 更新中间不同的部分,如果新旧key相同就更新一下重新利用,否则新的widget就没有旧的对应,是插入行为
- while (newChildrenTop <= newChildrenBottom) {
- Element? oldChild;
- final Widget newWidget = newWidgets[newChildrenTop];
- if (haveOldChildren) {
- final Key? key = newWidget.key;
- if (key != null) {
- // key不为null,通过key获取对应的旧Element
- oldChild = oldKeyedChildren![key];
- if (oldChild != null) {
- if (Widget.canUpdate(oldChild.widget, newWidget)) {
- // we found a match!
- // remove it from oldKeyedChildren so we don't unsync it later
- oldKeyedChildren.remove(key);
- } else {
- // Not a match, let's pretend we didn't see it for now.
- oldChild = null;
- }
- }
- }
- }
-
- final Element newChild = updateChild(oldChild, newWidget, slotFor(newChildrenTop, previousChild))!;
-
- newChildren[newChildrenTop] = newChild;
- previousChild = newChild;
- newChildrenTop += 1;
- }
-
- // We've scanned the whole list.
- // 重置
-
- newChildrenBottom = newWidgets.length - 1;
- oldChildrenBottom = oldChildren.length - 1;
-
- // 将后面相同的Element更新后添加到newChildren,至此形成新的完整的children。
- while ((oldChildrenTop <= oldChildrenBottom) && (newChildrenTop <= newChildrenBottom)) {
- final Element oldChild = oldChildren[oldChildrenTop];
-
-
- final Widget newWidget = newWidgets[newChildrenTop];
-
-
- final Element newChild = updateChild(oldChild, newWidget, slotFor(newChildrenTop, previousChild))!;
-
-
- newChildren[newChildrenTop] = newChild;
- previousChild = newChild;
- newChildrenTop += 1;
- oldChildrenTop += 1;
- }
-
- // 清除旧列表中多余的带key的Element
- if (haveOldChildren && oldKeyedChildren!.isNotEmpty) {
- for (final Element oldChild in oldKeyedChildren.values) {
- if (forgottenChildren == null || !forgottenChildren.contains(oldChild)) {
- deactivateChild(oldChild);
- }
- }
- }
-
- return newChildren;
- }
dif算法相对比较复杂,可能理解起来比较困难。值得一提的是,无论 updateChild还是updateChildren都实现在基类element里。同层diff算法里使用key并不是出于性能考虑,没有key能够就地复用,使用key能够指定复用对象。有时候就地复用会有一些问题,譬如某个widget自身有一些状态,你如果就地复用其他widget,就会导致这些状态的丢失。
再来看看inflateWidget的实现,它主要是用来创建新的element,并且mount。如果widget有GlobalKey的话,则会尝试获取对应的element,然后更新后返回。
- Element inflateWidget(Widget newWidget, Object? newSlot) {
-
- try {
- //如果widget带key,并且是GlobalKey,则尝试获取一下对应的element,并用新的widget更新它然后返回
- final Key? key = newWidget.key;
- if (key is GlobalKey) {
- final Element? newChild = _retakeInactiveElement(key, newWidget);
- if (newChild != null) {
-
- newChild._activateWithParent(this, newSlot);
- final Element? updatedChild = updateChild(newChild, newWidget, newSlot);
-
- return updatedChild!;
- }
- }
-
- // 这里就调用到了createElement,重新创建了Element
- final Element newChild = newWidget.createElement();
-
- newChild.mount(this, newSlot);
-
- return newChild;
- }
- }
我们再来看看element基类的mount:
- void mount(Element? parent, Object? newSlot) {
-
- _parent = parent;
- _slot = newSlot;
- _lifecycleState = _ElementLifecycle.active;
- _depth = _parent != null ? _parent!.depth + 1 : 1;
- if (parent != null) {
- // Only assign ownership if the parent is non-null. If parent is null
- // (the root node), the owner should have already been assigned.
- // See RootRenderObjectElement.assignOwner().
- _owner = parent.owner;
- }
-
- final Key? key = widget.key;
- if (key is GlobalKey) {
- owner!._registerGlobalKey(key, this);
- }
- _updateInheritance();
- attachNotificationTree();
- }
mount就是将自身插入父element的某个slot中。我们发现Element在mount的时候,会将父element的ower设置给自己。如果widget带有key,那么ower会将这个element注册到自己的map里。
而对于组合式Element的mount有所差异,除了上述基类行为,还会调用_firstBuild:
- @override
- void mount(Element? parent, Object? newSlot) {
- super.mount(parent, newSlot);
- _firstBuild();
-
- }
-
- void _firstBuild() {
- // StatefulElement overrides this to also call state.didChangeDependencies.
- rebuild(); // This eventually calls performRebuild.
- }
对于StatelessElement,_firstBuild的实现只是单纯rebuild一下。而对于StatefulElement:
- @override
- void _firstBuild() {
-
- final Object? debugCheckForReturnedFuture = state.initState() as dynamic;
- state.didChangeDependencies();
- super._firstBuild();
- }
我们发现_firstBuild里调用了state的initState方法,这里说明我们在state里实现的生命周期方法,其实会被StatefulElement根据自身的不同状态而调用。因此其他方法我们不再赘述。
在参考文章里有一个问题,我们来分析一下,增加我们对本文的理解程度。现在我们有如下一段代码:
- import 'dart:math';
-
- import 'package:flutter/foundation.dart';
- import 'package:flutter/material.dart';
-
- void main() => runApp(MyApp());
-
- class MyApp extends StatelessWidget {
- @override
- Widget build(BuildContext context) {
- return MaterialApp(
- title: 'Flutter Demo',
- theme: ThemeData(
- primarySwatch: Colors.blue,
- ),
- home: MyHomePage(title: 'Home Page'),
- );
- }
- }
-
- class MyHomePage extends StatefulWidget {
- MyHomePage({Key key, this.title}) : super(key: key);
-
- final String title;
-
- @override
- _MyHomePageState createState() => _MyHomePageState();
- }
-
- class _MyHomePageState extends State<MyHomePage> {
- List<Widget> widgets;
-
- @override
- void initState() {
- super.initState();
- widgets = [
- StatelessColorfulTile(),
- StatelessColorfulTile()
- ];
- }
-
- @override
- Widget build(BuildContext context) {
- return Scaffold(
- appBar: AppBar(
- title: Text(widget.title),
- ),
- body: Row(
- children: widgets,
- ),
- floatingActionButton: FloatingActionButton(
- child: Icon(Icons.refresh),
- onPressed: _swapTile,
- ),
- );
- }
-
- _swapTile() {
- setState(() {
- widgets.insert(1, widgets.removeAt(0));
- });
- }
- }
-
- class StatelessColorfulTile extends StatelessWidget {
-
- final Color _color = Utils.randomColor();
-
- @override
- Widget build(BuildContext context) {
- return Container(
- height: 150,
- width: 150,
- color: _color,
- );
- }
- }
-
- class Utils {
- static Color randomColor() {
- var red = Random.secure().nextInt(255);
- var greed = Random.secure().nextInt(255);
- var blue = Random.secure().nextInt(255);
- return Color.fromARGB(255, red, greed, blue);
- }
- }
代码可以直接复制到DartPad中运行查看效果。 或者点击这里直接运行。
效果很简单,就是两个彩色方块,点击右下角的按钮后交换两个方块的位置。上面的方块是StatelessWidget
,那我们把它换成StatefulWidget
呢?。
- class StatefulColorfulTile extends StatefulWidget {
- StatefulColorfulTile({Key key}) : super(key: key);
-
- @override
- StatefulColorfulTileState createState() => StatefulColorfulTileState();
- }
-
- class StatefulColorfulTileState extends State<StatefulColorfulTile> {
- final Color _color = Utils.randomColor();
-
- @override
- Widget build(BuildContext context) {
- return Container(
- height: 150,
- width: 150,
- color: _color,
- );
- }
- }
再次执行代码,发现方块没有“交换”。这是为什么?结论是widget层面而言,两个widget的确发生了交换,但是Element并没有发生交换,原来位置的Element持有的state build出原来颜色的Container。
可以看参考,这里暂不展开
buildOwner是framework这些代码背后的大boss。我们来看看它做了哪些事情。每个element都指向一个Owner用来维护它的生命周期:
- BuildOwner? get owner => _owner;
- BuildOwner? _owner;
为什么我们能用globalKey找到对应的element,没有什么神奇的,因为buildOwner有一个map维护着globalKey和element的对应关系:
- final Map<GlobalKey, Element> _globalKeyRegistry = <GlobalKey, Element>{};
-
- void _registerGlobalKey(GlobalKey key, Element element)
- void _unregisterGlobalKey(GlobalKey key, Element element)
buildOwner另一个作用是维护着element的build列表:
- final List<Element> _dirtyElements = <Element>[];
-
- void scheduleBuildFor(Element element) {
- if (element._inDirtyList) {
- _dirtyElementsNeedsResorting = true;
- return;
- }
- if (!_scheduledFlushDirtyElements && onBuildScheduled != null) {
- _scheduledFlushDirtyElements = true;
- onBuildScheduled!();
- }
- _dirtyElements.add(element);
- element._inDirtyList = true;
-
- }
WidgetsBinding会通过WidgetsBinding.drawFrame调用buildOwner的buildScope:
- void drawFrame() {
- buildOwner!.buildScope(renderViewElement!); // 1.重新构建widget
- super.drawFrame();
- //下面几个是在super.drawFrame()执行的
- pipelineOwner.flushLayout(); // 2.更新布局
- pipelineOwner.flushCompositingBits(); //3.更新“层合成”信息
- pipelineOwner.flushPaint(); // 4.重绘
- if (sendFramesToEngine) {
- renderView.compositeFrame(); // 5. 上屏,将绘制出的bit数据发送给GPU
- }
- }
buildScope对_dirtyElements里的element调用rebuild:
- void buildScope(Element context, [ VoidCallback? callback ]) {
- if (callback == null && _dirtyElements.isEmpty) {
- return;
- }
- try {
- _scheduledFlushDirtyElements = true;
- if (callback != null) {
- _dirtyElementsNeedsResorting = false;
- try {
- callback();
- }
-
- }
- _dirtyElements.sort(Element._sort);
- _dirtyElementsNeedsResorting = false;
- int dirtyCount = _dirtyElements.length;
- int index = 0;
- while (index < dirtyCount) {
- final Element element = _dirtyElements[index];
- try {
- element.rebuild();
- }
-
- index += 1;
- if (dirtyCount < _dirtyElements.length || _dirtyElementsNeedsResorting!) {
- _dirtyElements.sort(Element._sort);
- _dirtyElementsNeedsResorting = false;
- dirtyCount = _dirtyElements.length;
- while (index > 0 && _dirtyElements[index - 1].dirty) {
- // It is possible for previously dirty but inactive widgets to move right in the list.
- // We therefore have to move the index left in the list to account for this.
- // We don't know how many could have moved. However, we do know that the only possible
- // change to the list is that nodes that were previously to the left of the index have
- // now moved to be to the right of the right-most cleaned node, and we do know that
- // all the clean nodes were to the left of the index. So we move the index left
- // until just after the right-most clean node.
- index -= 1;
- }
- }
- }
-
- } finally {
- for (final Element element in _dirtyElements) {
- assert(element._inDirtyList);
- element._inDirtyList = false;
- }
- _dirtyElements.clear();
- _scheduledFlushDirtyElements = false;
- _dirtyElementsNeedsResorting = null;
- }
- }
后面的流程就回到了我们前面的performRebuild方法 。
本文没有提及具体的布局逻辑,将在后面的文章里进行讲述。
文中出现的一些关键类的继承关系:
1.说说Flutter中最熟悉的陌生人 —— Key_flutter globalkey 源码_唯鹿的博客-CSDN博客
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。