当前位置:   article > 正文

初级爬虫实战——伯克利新闻

初级爬虫实战——伯克利新闻

发现宝藏

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【宝藏入口】。

一、 目标

爬取https://news.berkeley.edu/的字段,包含标题、内容,作者,发布时间,链接地址,文章快照 (可能需要翻墙才能访问)

二、简单分析网页

1. 寻找所有新闻

在这里插入图片描述

2. 分析模块、版面和文章

我们可以按照新闻模块、版面、和文章对网页信息进行拆分,分别按照步骤进行爬取

在这里插入图片描述
在这里插入图片描述

三、爬取新闻

1. 爬取模块

由于该新闻只有一个模块,所以直接请求该模块地址即可获取该模块的所有信息,但是为了兼容多模块的新闻,我们还是定义一个数组存储模块地址

class MitnewsScraper:
    def __init__(self, root_url, model_url, img_output_dir):
        self.root_url = root_url
        self.model_url = model_url
        self.img_output_dir = img_output_dir
        self.headers = {
            'Referer': 'https://news.berkeley.edu/',
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) '
                          'Chrome/122.0.0.0 Safari/537.36',
            'Cookie': '替换成你自己的',
        }
        
...

def run():
    # 根路径
    root_url = 'https://news.berkeley.edu/'
    # 模块地址数组
    model_urls = ['https://news.berkeley.edu/news']
    # 文章图片保存路径
    output_dir = 'D://imgs//berkeley-news'

    for model_url in model_urls:
        scraper = MitnewsScraper(root_url, model_url, output_dir)
        scraper.catalogue_all_pages()


if __name__ == "__main__":
    run()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

多模块的新闻网站例子如下(4个模块)

在这里插入图片描述

2. 爬取版面

  • f12打开控制台,点击网络(network),通过切换页面观察接口的参数传递,发现只有一个page参数

在这里插入图片描述

  • 于是我们可以获取页面下面的页数(page x of xxxx), 然后进行遍历传参,也就遍历获取了所有版面

在这里插入图片描述

    # 获取一个模块有多少版面
    def catalogue_all_pages(self):
        response = requests.get(self.model_url, headers=self.headers)
        soup = BeautifulSoup(response.text, 'html.parser')
        try:
            match = re.search(r'of (\d+)', soup.text)
            num_pages = int(match.group(1))
            print('模块一共有' + str(num_pages) + '页版面,')
            for page in range(1, num_pages + 1):
                self.parse_catalogues(page)
                print(f"========Finished modeles page {page}========")
        except:
            return False
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • F12打开控制台后按照如下步骤获取版面列表对应的dom结构

在这里插入图片描述

在这里插入图片描述

  catalogue_list = soup.find('div', 'filtered-items')
  catalogues_list = catalogue_list.find_all('article')
  • 1
  • 2

在这里插入图片描述

  • 遍历版面列表,获取版面标题

在这里插入图片描述

    for index, catalogue in enumerate(catalogues_list):
        # 版面标题
        catalogue_title = catalogue.find('div', 'news-item__description').find('a').get_text(strip=True)
        print('第' + str(index + 1) + '个版面标题为:' + catalogue_title)
  • 1
  • 2
  • 3
  • 4

在这里插入图片描述

  • 获取版面更新时间和当下的操作时间

在这里插入图片描述

    # 操作时间
    date = datetime.now()
    # 更新时间
    publish_time = catalogue.find('div', 'news-item__description').find('time').get('datetime')
    #  将日期字符串转换为datetime对象
    updatetime = datetime.strptime(publish_time, '%Y-%m-%d')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在这里插入图片描述

  • 保存版面url和版面id, 由于该新闻是一个版面对应一篇文章,所以版面url和文章url是一样的,而且文章没有明显的标识,我们把地址后缀作为文章id,版面id则是文章id后面加上个01, 为了避免标题重复也可以把日期前缀也加上去

在这里插入图片描述

在这里插入图片描述

     # 版面url
    catalogue_href = catalogue.find('div', 'news-item__description').find('a').get('href')
    catalogue_url = self.root_url + catalogue_href
    # 版面id
    catalogue_id = catalogue_href[1:]
    print('第' + str(index + 1) + '个版面地址为:' + catalogue_url)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在这里插入图片描述

  • 保存版面信息到mogodb数据库(由于每个版面只有一篇文章,所以版面文章数量cardsize的值赋为1)
	# 连接 MongoDB 数据库服务器
	client = MongoClient('mongodb://localhost:27017/')
	# 创建或选择数据库
	db = client['berkeley-news']
	# 创建或选择集合
	catalogues_collection = db['catalogues']
	# 插入示例数据到 catalogues 集合
	catalogue_data = {
		'id': catalogue_id + '01',
		'date': date,
		'title': catalogue_title,
		'url': catalogue_url,
		'cardSize': 1,
		'updatetime': updatetime
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

3. 爬取文章

  • 由于一个版面对应一篇文章,所以版面url 、更新时间、标题和文章是一样的,并且按照设计版面id和文章id的区别只是差了个01,所以可以传递版面url、版面id、更新时间和标题四个参数到解析文章的函数里面

  • 获取文章id,文章url,文章更新时间和当下操作时间

# 解析版面
def parse_catalogues(self, page):
...
    self.parse_cards_list(catalogue_url, catalogue_id, updatetime, catalogue_title)
...

# 解析文章
    def parse_cards_list(self, url, catalogue_id, updatetime, cardtitle):
        card_response = requests.get(url, headers=self.headers)
        soup = BeautifulSoup(card_response.text, 'html.parser')
        
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

在这里插入图片描述

  • 获取文章作者

在这里插入图片描述

    # 文章作者
    author = soup.find('a', href='/author/news').get_text()
  • 1
  • 2

在这里插入图片描述

  • 获取文章原始htmldom结构,并删除无用的部分(以下仅是部分举例),用html_content字段保留原始dom结构

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

        # 原始htmldom结构
        html_dom = soup.find('div', 'single-post cb-section cb-stretch')

        # 标题上方的冗余
        html_cut1 = html_dom.find('div', 'single-post__heading').find('strong')
        # 链接冗余
        html_cut2 = html_dom.find_all('a', 'a2a_dd share-link')
      
        # 移除元素
        if html_cut1:
            html_cut1.extract()
        if html_cut2:
            for item in html_cut2:
                item.extract()
        html_content = html_dom

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

在这里插入图片描述

在这里插入图片描述

  • 进行文章清洗,保留文本,去除标签,用content保留清洗后的文本
 # 解析文章列表里的文章
    def parse_cards_list(self, url, catalogue_id, cardupdatetime, cardtitle):
    ...
     # 增加保留html样式的源文本
        origin_html = html_dom.prettify()  # String
        # 转义网页中的图片标签
        str_html = self.transcoding_tags(origin_html)
        # 再包装成
        temp_soup = BeautifulSoup(str_html, 'html.parser')
        # 反转译文件中的插图
        str_html = self.translate_tags(temp_soup.text)
        # 绑定更新内容
        content = self.clean_content(str_html)

 # 工具 转义标签
    def transcoding_tags(self, htmlstr):
        re_img = re.compile(r'\s*<(img.*?)>\s*', re.M)
        s = re_img.sub(r'\n @@##\1##@@ \n', htmlstr)  # IMG 转义
        return s

    # 工具 转义标签
    def translate_tags(self, htmlstr):
        re_img = re.compile(r'@@##(img.*?)##@@', re.M)
        s = re_img.sub(r'<\1>', htmlstr)  # IMG 转义
        return s

    # 清洗文章
    def clean_content(self, content):
        if content is not None:
            content = re.sub(r'\r', r'\n', content)
            content = re.sub(r'\n{2,}', '', content)
            content = re.sub(r' {6,}', '', content)
            content = re.sub(r' {3,}\n', '', content)
            content = re.sub(r'<img src="../../../image/zxbl.gif"/>', '', content)
            content = content.replace(
                '<img border="0" src="****处理标记:[Article]时, 字段 [SnapUrl] 在数据源中没有找到! ****"/> ', '')
            content = content.replace(
                ''' <!--/enpcontent<INPUT type=checkbox value=0 name=titlecheckbox sourceid="<Source>SourcePh " style="display:none">''',
                '') \
                .replace(' <!--enpcontent', '').replace('<TABLE>', '')
            content = content.replace('<P>', '').replace('<\P>', '').replace('&nbsp;', ' ')
        return content
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 下载保存图片

 def parse_cards_list(self, url, catalogue_id, cardupdatetime, cardtitle):
 ...
	imgs = []
    img_array = soup.find('figure', 'cb-image cb-float--none cb-float--none--md cb-float--none--lg cb-100w cb-100w--md cb-100w--lg new-figure').find_all('img')
    for item in img_array:
        img_url = item.get('src')
        imgs.append(img_url)
    if len(imgs) != 0:
        # 下载图片
        illustrations = self.download_images(imgs, card_id)

  # 下载图片
    def download_images(self, img_urls, card_id):
        result = re.search(r'[^/]+$', card_id)
        last_word = result.group(0)

        # 根据card_id创建一个新的子目录
        images_dir = os.path.join(self.img_output_dir, str(last_word))
        if not os.path.exists(images_dir):
            os.makedirs(images_dir)
            downloaded_images = []
            for index, img_url in enumerate(img_urls):
                try:
                    response = requests.get(img_url, stream=True, headers=self.headers)
                    if response.status_code == 200:
                        # 从URL中提取图片文件名
                        img_name_with_extension = img_url.split('/')[-1]
                        pattern = r'^[^?]*'
                        match = re.search(pattern, img_name_with_extension)
                        img_name = match.group(0)

                        # 保存图片
                        with open(os.path.join(images_dir, img_name), 'wb') as f:
                            f.write(response.content)
                        downloaded_images.append([img_url, os.path.join(images_dir, img_name)])
                except requests.exceptions.RequestException as e:
                    print(f'请求图片时发生错误:{e}')
                except Exception as e:
                    print(f'保存图片时发生错误:{e}')
            return downloaded_images
        # 如果文件夹存在则跳过
        else:
            print(f'文章id为{card_id}的图片文件夹已经存在')
            return []
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 保存文章数据
 # 连接 MongoDB 数据库服务器
        client = MongoClient('mongodb://localhost:27017/')
        # 创建或选择数据库
        db = client['berkeley-news']
        # 创建或选择集合
        cards_collection = db['cards']
        # 插入示例数据到 catalogues 集合
        card_data = {
            'id': card_id,
            'catalogueId': catalogue_id,
            'type': 'berkeley-news',
            'date': date,
            'title': card_title,
            'author': author,
            'updatetime': updateTime,
            'url': url,
            'html_content': str(html_content),
            'content': content,
            'illustrations': illustrations,
        }
        cards_collection.insert_one(card_data)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

四、完整代码

import os
from datetime import datetime
import requests
from bs4 import BeautifulSoup
from pymongo import MongoClient
import re
import traceback


class MitnewsScraper:
    def __init__(self, root_url, model_url, img_output_dir):
        self.root_url = root_url
        self.model_url = model_url
        self.img_output_dir = img_output_dir
        self.headers = {
            'Referer': 'https://news.berkeley.edu/',
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) '
                          'Chrome/122.0.0.0 Safari/537.36',
            'Cookie': '替换成你自己的',
        }

    # 获取一个模块有多少版面
    def catalogue_all_pages(self):
        response = requests.get(self.model_url, headers=self.headers)
        soup = BeautifulSoup(response.text, 'html.parser')
        try:
            match = re.search(r'of (\d+)', soup.text)
            num_pages = int(match.group(1))
            print('模块一共有' + str(num_pages) + '页版面')
            for page in range(1, num_pages + 1):
                print(f"========start catalogues page {page}" + "/" + str(num_pages) + "========")
                self.parse_catalogues(page)
                print(f"========Finished catalogues page {page}" + "/" + str(num_pages) + "========")
        except Exception as e:
            print(f'Error: {e}')
            traceback.print_exc()

    # 解析版面列表里的版面
    def parse_catalogues(self, page):
        params = {'page': page}
        response = requests.get(self.model_url, params=params, headers=self.headers)
        if response.status_code == 200:
            soup = BeautifulSoup(response.text, 'html.parser')
            catalogue_list = soup.find('div', 'filtered-items')
            catalogues_list = catalogue_list.find_all('article')
            for index, catalogue in enumerate(catalogues_list):
                print(f"========start catalogue {index+1}" + "/" + "10========")
                # 版面标题
                catalogue_title = catalogue.find('div', 'news-item__description').find('a').get_text(strip=True)

                # 操作时间
                date = datetime.now()
                # 更新时间
                publish_time = catalogue.find('div', 'news-item__description').find('time').get('datetime')
                #  将日期字符串转换为datetime对象
                updatetime = datetime.strptime(publish_time, '%Y-%m-%d')

                # 版面url
                catalogue_href = catalogue.find('div', 'news-item__description').find('a').get('href')
                catalogue_url = self.root_url + catalogue_href
                # 版面id
                catalogue_id = catalogue_href[1:]

                self.parse_cards_list(catalogue_url, catalogue_id, updatetime, catalogue_title)

                # 连接 MongoDB 数据库服务器
                client = MongoClient('mongodb://localhost:27017/')
                # 创建或选择数据库
                db = client['berkeley-news']
                # 创建或选择集合
                catalogues_collection = db['catalogues']
                # 插入示例数据到 catalogues 集合
                catalogue_data = {
                    'id': catalogue_id,
                    'date': date,
                    'title': catalogue_title,
                    'url': catalogue_url,
                    'cardSize': 1,
                    'updatetime': updatetime
                }
                # 在插入前检查是否存在相同id的文档
                existing_document = catalogues_collection.find_one({'id': catalogue_id})

                # 如果不存在相同id的文档,则插入新文档
                if existing_document is None:
                    catalogues_collection.insert_one(catalogue_data)
                    print("[爬取版面]版面 " + catalogue_url + " 已成功插入!")
                else:
                    print("[爬取版面]版面 " + catalogue_url + " 已存在!")
                print(f"========finsh catalogue {index+1}" + "/" + "10========")
            return True
        else:
            raise Exception(f"Failed to fetch page {page}. Status code: {response.status_code}")

    # 解析文章列表里的文章
    def parse_cards_list(self, url, catalogue_id, cardupdatetime, cardtitle):
        url = 'https://news.berkeley.edu/2024/03/05/meet-our-new-faculty-antoine-levy-economics'
        card_response = requests.get(url, headers=self.headers)
        soup = BeautifulSoup(card_response.text, 'html.parser')
        # 对应的版面id
        card_id = catalogue_id
        # 文章标题
        card_title = cardtitle
        # 文章更新时间
        updateTime = cardupdatetime
        # 操作时间
        date = datetime.now()

        # 文章作者
        try:
            author = soup.find('a', href='/author/news').get_text()
        except:
            author = soup.find('div', 'single-post__heading').find('p').find('a').get_text()

        # 原始htmldom结构
        html_dom = soup.find('div', 'single-post cb-section cb-stretch')

        # 标题上方的冗余
        html_cut1 = html_dom.find('div', 'single-post__heading').find('strong')
        # 链接冗余
        html_cut2 = html_dom.find_all('a', 'a2a_dd share-link')

        # 移除元素
        if html_cut1:
            html_cut1.extract()
        if html_cut2:
            for item in html_cut2:
                item.extract()

        html_content = html_dom

        # 增加保留html样式的源文本
        origin_html = html_dom.prettify()  # String
        # 转义网页中的图片标签
        str_html = self.transcoding_tags(origin_html)
        # 再包装成
        temp_soup = BeautifulSoup(str_html, 'html.parser')
        # 反转译文件中的插图
        str_html = self.translate_tags(temp_soup.text)
        # 绑定更新内容
        content = self.clean_content(str_html)
        # 下载图片
        imgs = []
        try:
            img_array = soup.find('figure', 'cb-image cb-float--none cb-float--none--md cb-float--none--lg cb-100w cb-100w--md cb-100w--lg new-figure').find_all('img')
        except:
            img_array = soup.find('div', 'container container--lg cb-container').find_all('img')
        if len(img_array) is not None:
            for item in img_array:
                img_url = item.get('src')
                if img_url is None:
                    img_url = item.get('data-src')
                imgs.append(img_url)
        if len(imgs) != 0:
            # 下载图片
            illustrations = self.download_images(imgs, card_id)
        # 连接 MongoDB 数据库服务器
        client = MongoClient('mongodb://localhost:27017/')
        # 创建或选择数据库
        db = client['berkeley-news']
        # 创建或选择集合
        cards_collection = db['cards']
        # 插入示例数据到 cards 集合
        card_data = {
            'id': card_id,
            'catalogueId': catalogue_id,
            'type': 'berkeley-news',
            'date': date,
            'title': card_title,
            'author': author,
            'updatetime': updateTime,
            'url': url,
            'html_content': str(html_content),
            'content': content,
            'illustrations': illustrations,
        }
        # 在插入前检查是否存在相同id的文档
        existing_document = cards_collection.find_one({'id': card_id})

        # 如果不存在相同id的文档,则插入新文档
        if existing_document is None:
            cards_collection.insert_one(card_data)
            print("[爬取文章]文章 " + url + " 已成功插入!")
        else:
            print("[爬取文章]文章 " + url + " 已存在!")


    # 下载图片
    def download_images(self, img_urls, card_id):
        result = re.search(r'[^/]+$', card_id)
        last_word = result.group(0)

        # 根据card_id创建一个新的子目录
        images_dir = os.path.join(self.img_output_dir, str(last_word))
        if not os.path.exists(images_dir):
            os.makedirs(images_dir)
            downloaded_images = []
            for index, img_url in enumerate(img_urls):
                try:
                    response = requests.get(img_url, stream=True, headers=self.headers)
                    if response.status_code == 200:
                        # 从URL中提取图片文件名
                        img_name_with_extension = img_url.split('/')[-1]
                        pattern = r'^[^?]*'
                        match = re.search(pattern, img_name_with_extension)
                        img_name = match.group(0)

                        # 保存图片
                        with open(os.path.join(images_dir, img_name), 'wb') as f:
                            f.write(response.content)
                        downloaded_images.append([img_url, os.path.join(images_dir, img_name)])
                        print(f'[爬取文章图片]文章id为{card_id}的图片已保存到本地')
                except requests.exceptions.RequestException as e:
                    print(f'请求图片时发生错误:{e}')
                except Exception as e:
                    print(f'保存图片时发生错误:{e}')
            return downloaded_images
        # 如果文件夹存在则跳过
        else:
            print(f'[爬取文章图片]文章id为{card_id}的图片文件夹已经存在')
            return []

    # 工具 转义标签
    def transcoding_tags(self, htmlstr):
        re_img = re.compile(r'\s*<(img.*?)>\s*', re.M)
        s = re_img.sub(r'\n @@##\1##@@ \n', htmlstr)  # IMG 转义
        return s

    # 工具 转义标签
    def translate_tags(self, htmlstr):
        re_img = re.compile(r'@@##(img.*?)##@@', re.M)
        s = re_img.sub(r'<\1>', htmlstr)  # IMG 转义
        return s

    # 清洗文章
    def clean_content(self, content):
        if content is not None:
            content = re.sub(r'\r', r'\n', content)
            content = re.sub(r'\n{2,}', '', content)
            content = re.sub(r' {6,}', '', content)
            content = re.sub(r' {3,}\n', '', content)
            content = re.sub(r'<img src="../../../image/zxbl.gif"/>', '', content)
            content = content.replace(
                '<img border="0" src="****处理标记:[Article]时, 字段 [SnapUrl] 在数据源中没有找到! ****"/> ', '')
            content = content.replace(
                ''' <!--/enpcontent<INPUT type=checkbox value=0 name=titlecheckbox sourceid="<Source>SourcePh " style="display:none">''',
                '') \
                .replace(' <!--enpcontent', '').replace('<TABLE>', '')
            content = content.replace('<P>', '').replace('<\P>', '').replace('&nbsp;', ' ')
        return content


def run():
    # 根路径
    root_url = 'https://news.berkeley.edu/'
    # 模块地址数组
    model_urls = ['https://news.berkeley.edu/news']
    # 文章图片保存路径
    output_dir = 'D://imgs//berkeley-news'

    for model_url in model_urls:
        scraper = MitnewsScraper(root_url, model_url, output_dir)
        scraper.catalogue_all_pages()


if __name__ == "__main__":
    run()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268

五、效果展示

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/324595
推荐阅读
相关标签
  

闽ICP备14008679号