赞
踩
VIT流程:
图片划分patch,加上class_token,加上位置编码,传到transformer,分类预测。
ViT绘制Grad-CAM热力图时要注意:
(1)在代码得到CAM图时,由于VIT最后得到的是patch的梯度,要reshape成二维图。
所以,去掉class_token序列,拿到所有组成原图的token,将它们reshape回原图的大小。
经过最后一个transformer block得到预测输出的示意图如下。
(2)反向梯度传播是从最后预测开始,逆着经过整个模型,而Dropout和MLP都是单个token做的,不能将最后y_c结果梯度传给所有token,只有在倒推回自注意力后才能将梯度返传给所有token。
而CNN最后一层全连接层,可以直接将梯度传给所有点。
import os import numpy as np import torch from PIL import Image import matplotlib.pyplot as plt from torchvision import transforms from utils import GradCAM, show_cam_on_image, center_crop_img from vit_model import vit_base_patch16_224 class ReshapeTransform: def __init__(self, model): input_size = model.patch_embed.img_size patch_size = model.patch_embed.patch_size self.h = input_size[0] // patch_size[0] self.w = input_size[1] // patch_size[1] def __call__(self, x):# x是个token序列 # remove cls token and reshape # [batch_size, num_tokens, token_dim] #拿到所有组成原图的token,将它们reshape回原图的大小 result = x[:, 1:, :].reshape(x.size(0),#从1开始,忽略掉class_token self.h, self.w, x.size(2)) # Bring the channels to the first dimension, # like in CNNs. # [batch_size, H, W, C] -> [batch, C, H, W] result = result.permute(0, 3, 1, 2) return result def main(): model = vit_base_patch16_224() # 链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA 密码: eu9f weights_path = "./vit_base_patch16_224.pth" model.load_state_dict(torch.load(weights_path, map_location="cpu")) target_layers = [model.blocks[-1].norm1] #最后一个block的norm1- #---vit最后只对class_token做预测,只用它对结果有贡献,也就只有它有梯度,再将最后预测的结果进行反向传播,后面那几层都只是token自己的MLP,LN只有在多头注意力才将class_token与其余token关联起来 #反向梯度传播是从最后预测开始,经过整个模型。target_layers只是表示记录这些layers的梯度信息而已 data_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) # load image img_path = "both.png" assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path) img = Image.open(img_path).convert('RGB') img = np.array(img, dtype=np.uint8) img = center_crop_img(img, 224) # [C, H, W] img_tensor = data_transform(img) # expand batch dimension # [C, H, W] -> [N, C, H, W] input_tensor = torch.unsqueeze(img_tensor, dim=0) cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False, reshape_transform=ReshapeTransform(model)) target_category = 281 # tabby, tabby cat # target_category = 254 # pug, pug-dog grayscale_cam = cam(input_tensor=input_tensor, target_category=target_category) grayscale_cam = grayscale_cam[0, :] visualization = show_cam_on_image(img / 255., grayscale_cam, use_rgb=True) plt.imshow(visualization) plt.show() if __name__ == '__main__': main()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。