当前位置:   article > 正文

Pytorch使用Grad-CAM绘制ViT热力图_vit模型可似乎热力图

vit模型可似乎热力图

VIT流程:
图片划分patch,加上class_token,加上位置编码,传到transformer,分类预测。
ViT绘制Grad-CAM热力图时要注意:
(1)在代码得到CAM图时,由于VIT最后得到的是patch的梯度,要reshape成二维图。
所以,去掉class_token序列,拿到所有组成原图的token,将它们reshape回原图的大小。
在这里插入图片描述
经过最后一个transformer block得到预测输出的示意图如下。
(2)反向梯度传播是从最后预测开始,逆着经过整个模型,而Dropout和MLP都是单个token做的,不能将最后y_c结果梯度传给所有token,只有在倒推回自注意力后才能将梯度返传给所有token。
而CNN最后一层全连接层,可以直接将梯度传给所有点。
在这里插入图片描述

import os
import numpy as np
import torch
from PIL import Image
import matplotlib.pyplot as plt
from torchvision import transforms
from utils import GradCAM, show_cam_on_image, center_crop_img
from vit_model import vit_base_patch16_224


class ReshapeTransform:
    def __init__(self, model):
        input_size = model.patch_embed.img_size
        patch_size = model.patch_embed.patch_size
        self.h = input_size[0] // patch_size[0]
        self.w = input_size[1] // patch_size[1]

    def __call__(self, x):# x是个token序列
        # remove cls token and reshape
        # [batch_size, num_tokens, token_dim]
        #拿到所有组成原图的token,将它们reshape回原图的大小
        result = x[:, 1:, :].reshape(x.size(0),#从1开始,忽略掉class_token
                                     self.h,
                                     self.w,
                                     x.size(2))

        # Bring the channels to the first dimension,
        # like in CNNs.
        # [batch_size, H, W, C] -> [batch, C, H, W]
        result = result.permute(0, 3, 1, 2)
        return result


def main():
    model = vit_base_patch16_224()
    # 链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA  密码: eu9f
    weights_path = "./vit_base_patch16_224.pth"
    model.load_state_dict(torch.load(weights_path, map_location="cpu"))

    target_layers = [model.blocks[-1].norm1] #最后一个block的norm1-
    #---vit最后只对class_token做预测,只用它对结果有贡献,也就只有它有梯度,再将最后预测的结果进行反向传播,后面那几层都只是token自己的MLP,LN只有在多头注意力才将class_token与其余token关联起来
    #反向梯度传播是从最后预测开始,经过整个模型。target_layers只是表示记录这些layers的梯度信息而已
    data_transform = transforms.Compose([transforms.ToTensor(),
                                         transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
    # load image
    img_path = "both.png"
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path).convert('RGB')
    img = np.array(img, dtype=np.uint8)
    img = center_crop_img(img, 224)
    # [C, H, W]
    img_tensor = data_transform(img)
    # expand batch dimension
    # [C, H, W] -> [N, C, H, W]
    input_tensor = torch.unsqueeze(img_tensor, dim=0)

    cam = GradCAM(model=model,
                  target_layers=target_layers,
                  use_cuda=False,
                  reshape_transform=ReshapeTransform(model))
    target_category = 281  # tabby, tabby cat
    # target_category = 254  # pug, pug-dog

    grayscale_cam = cam(input_tensor=input_tensor, target_category=target_category)

    grayscale_cam = grayscale_cam[0, :]
    visualization = show_cam_on_image(img / 255., grayscale_cam, use_rgb=True)
    plt.imshow(visualization)
    plt.show()


if __name__ == '__main__':
    main()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/340947
推荐阅读
相关标签
  

闽ICP备14008679号