赞
踩
与seq2seq相比transformer是一个纯粹基于注意力的架构(自注意力同时具有并行计算和最短的最大路径长度这两个优势),没有用到任何CNN和RNN。
如下图所示,transformer是由编码器和解码器组成的。transformer的编码器和解码器是基于自注意力的模块叠加而成的,源(输入)序列和目标(输出)序列的嵌入表示将加上位置编码,再分别输入到编码器和解码器中。
对同一key,value,query,希望可以抽取到不同信息
多头注意力使用h个独立的注意力池化
具体思路:
我们可以用独立学习得到的h组不同的线性投影来变换查询、键和值。 然后,这h组变换后的查询、键和值将并行地送到注意力汇聚中。 最后,将这h个注意力汇聚的输出拼接在一起, 并且通过另一个可以学习的线性投影进行变换, 以产生最终输出。 这种设计被称为多头注意力:
模型:
如上所示,额外加入了可学习参数W
该参数将query的维度从Dq映射为Pq,将key的维度从Dq映射为Kq,将value的维度从Dq映射为Vq。(这个映射通常会使数量减少)
最终再将输出的可学习参数Wo与hi的拼接结果相乘最终得到多头注意力的输出(Po)
解码器对序列中一个元素输出时,不应该考虑该元素之后的元素
可以通过掩码来实现
本质是一个全连接层
将输入形状由(b, n, d)变化为(bn, d)b为batch_size n为序列长度 d为特征维度
作用两个全连接层
输出形状由(bn, d)变化回(b, n, d)
等价于两层核窗口为1的一维卷积层
批量归一化对每个特征/通道里的元素进行归一化(方差变1均值变0)
层归一化对每个样本的元素进行归一化
如上图所示:
Batch Normalization处理的是d中的每一个b*len的矩阵(左图蓝色部分)方差变1均值变0。操作范围在每一个特征维度中。
Layer Normalization处理的是每一个batch中的len*d的矩阵(右图蓝色部分)方差变1均值变0。操作范围在单个样本内部。在变化长度时较BN更加稳定
编码器中输出y1…yn
将其作为解码中第i个Transformer块中多头注意力的key和value(query来自目标序列)
意味着编码器和解码器中块的个数和输出维度都是一样的
在预测t+1个输出时,解码器中输入前t个预测值(在自注意力中,前t个预测值作为key和value,第t个预测值作为query)
在进行第t+1个预测时,已经知道了前t个预测的值
在训练的时候可以是并行的,在预测时是顺序的。
小结:
选择缩放点积注意力作为每一个注意力头
import math import torch from torch import nn from d2l import torch as d2l #@save class MultiHeadAttention(nn.Module): """多头注意力""" def __init__(self, key_size, query_size, value_size, num_hiddens, num_heads, dropout, bias=False, **kwargs): super(MultiHeadAttention, self).__init__(**kwargs) self.num_heads = num_heads self.attention = d2l.DotProductAttention(dropout) self.W_q = nn.Linear(query_size, num_hiddens, bias=bias) self.W_k = nn.Linear(key_size, num_hiddens, bias=bias) self.W_v = nn.Linear(value_size, num_hiddens, bias=bias) self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias) def forward(self, queries, keys, values, valid_lens): # queries,keys,values的形状: # (batch_size,查询或者“键-值”对的个数,num_hiddens) # valid_lens 的形状: # (batch_size,)或(batch_size,查询的个数) # 经过变换后,输出的queries,keys,values 的形状: # (batch_size*num_heads,查询或者“键-值”对的个数, # num_hiddens/num_heads) queries = transpose_qkv(self.W_q(queries), self.num_heads) keys = transpose_qkv(self.W_k(keys), self.num_heads) values = transpose_qkv(self.W_v(values), self.num_heads) if valid_lens is not None: # 在轴0,将第一项(标量或者矢量)复制num_heads次, # 然后如此复制第二项,然后诸如此类。 valid_lens = torch.repeat_interleave( valid_lens, repeats=self.num_heads, dim=0) # output的形状:(batch_size*num_heads,查询的个数, # num_hiddens/num_heads) output = self.attention(queries, keys, values, valid_lens) # output_concat的形状:(batch_size,查询的个数,num_hiddens) output_concat = transpose_output(output, self.num_heads) return self.W_o(output_concat) #@save def transpose_qkv(X, num_heads): """为了多注意力头的并行计算而变换形状""" # 输入X的形状:(batch_size,查询或者“键-值”对的个数,num_hiddens) # 输出X的形状:(batch_size,查询或者“键-值”对的个数,num_heads, # num_hiddens/num_heads) X = X.reshape(X.shape[0], X.shape[1], num_heads, -1) # 输出X的形状:(batch_size,num_heads,查询或者“键-值”对的个数, # num_hiddens/num_heads) X = X.permute(0, 2, 1, 3) # 最终输出的形状:(batch_size*num_heads,查询或者“键-值”对的个数, # num_hiddens/num_heads) return X.reshape(-1, X.shape[2], X.shape[3]) #@save def transpose_output(X, num_heads): """逆转transpose_qkv函数的操作""" X = X.reshape(-1, num_heads, X.shape[1], X.shape[2]) X = X.permute(0, 2, 1, 3) return X.reshape(X.shape[0], X.shape[1], -1) num_hiddens, num_heads = 100, 5 attention = MultiHeadAttention(num_hiddens, num_hiddens, num_hiddens, num_hiddens, num_heads, 0.5) attention.eval() batch_size, num_queries = 2, 4 num_kvpairs, valid_lens = 6, torch.tensor([3, 2]) X = torch.ones((batch_size, num_queries, num_hiddens)) Y = torch.ones((batch_size, num_kvpairs, num_hiddens)) attention(X, Y, Y, valid_lens).shape
## from https://github.com/graykode/nlp-tutorial/tree/master/5-1.Transformer import numpy as np import torch import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt import math def make_batch(sentences): input_batch = [[src_vocab[n] for n in sentences[0].split()]] output_batch = [[tgt_vocab[n] for n in sentences[1].split()]] target_batch = [[tgt_vocab[n] for n in sentences[2].split()]] return torch.LongTensor(input_batch), torch.LongTensor(output_batch), torch.LongTensor(target_batch) ## 10 def get_attn_subsequent_mask(seq): """ seq: [batch_size, tgt_len] """ attn_shape = [seq.size(0), seq.size(1), seq.size(1)] # attn_shape: [batch_size, tgt_len, tgt_len] subsequence_mask = np.triu(np.ones(attn_shape), k=1) # 生成一个上三角矩阵 subsequence_mask = torch.from_numpy(subsequence_mask).byte() return subsequence_mask # [batch_size, tgt_len, tgt_len] ## 7. ScaledDotProductAttention class ScaledDotProductAttention(nn.Module): def __init__(self): super(ScaledDotProductAttention, self).__init__() def forward(self, Q, K, V, attn_mask): ## 输入进来的维度分别是 [batch_size x n_heads x len_q x d_k] K: [batch_size x n_heads x len_k x d_k] V: [batch_size x n_heads x len_k x d_v] ##首先经过matmul函数得到的scores形状是 : [batch_size x n_heads x len_q x len_k] scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) ## 然后关键词地方来了,下面这个就是用到了我们之前重点讲的attn_mask,把被mask的地方置为无限小,softmax之后基本就是0,对q的单词不起作用 scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is one. attn = nn.Softmax(dim=-1)(scores) context = torch.matmul(attn, V) return context, attn ## 6. MultiHeadAttention class MultiHeadAttention(nn.Module): def __init__(self): super(MultiHeadAttention, self).__init__() ## 输入进来的QKV是相等的,我们会使用映射linear做一个映射得到参数矩阵Wq, Wk,Wv self.W_Q = nn.Linear(d_model, d_k * n_heads) self.W_K = nn.Linear(d_model, d_k * n_heads) self.W_V = nn.Linear(d_model, d_v * n_heads) self.linear = nn.Linear(n_heads * d_v, d_model) self.layer_norm = nn.LayerNorm(d_model) def forward(self, Q, K, V, attn_mask): ## 这个多头分为这几个步骤,首先映射分头,然后计算atten_scores,然后计算atten_value; ##输入进来的数据形状: Q: [batch_size x len_q x d_model], K: [batch_size x len_k x d_model], V: [batch_size x len_k x d_model] residual, batch_size = Q, Q.size(0) # (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W) ##下面这个就是先映射,后分头;一定要注意的是q和k分头之后维度是一致额,所以一看这里都是dk q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,2) # q_s: [batch_size x n_heads x len_q x d_k] k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1,2) # k_s: [batch_size x n_heads x len_k x d_k] v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1,2) # v_s: [batch_size x n_heads x len_k x d_v] ## 输入进行的attn_mask形状是 batch_size x len_q x len_k,然后经过下面这个代码得到 新的attn_mask : [batch_size x n_heads x len_q x len_k],就是把pad信息重复了n个头上 attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) ##然后我们计算 ScaledDotProductAttention 这个函数,去7.看一下 ## 得到的结果有两个:context: [batch_size x n_heads x len_q x d_v], attn: [batch_size x n_heads x len_q x len_k] context, attn = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask) context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v) # context: [batch_size x len_q x n_heads * d_v] output = self.linear(context) return self.layer_norm(output + residual), attn # output: [batch_size x len_q x d_model] ## 8. PoswiseFeedForwardNet class PoswiseFeedForwardNet(nn.Module): def __init__(self): super(PoswiseFeedForwardNet, self).__init__() self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1) self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1) self.layer_norm = nn.LayerNorm(d_model) def forward(self, inputs): residual = inputs # inputs : [batch_size, len_q, d_model] output = nn.ReLU()(self.conv1(inputs.transpose(1, 2))) output = self.conv2(output).transpose(1, 2) return self.layer_norm(output + residual) ## 4. get_attn_pad_mask ## 比如说,我现在的句子长度是5,在后面注意力机制的部分,我们在计算出来QK转置除以根号之后,softmax之前,我们得到的形状 ## len_input * len*input 代表每个单词对其余包含自己的单词的影响力 ## 所以这里我需要有一个同等大小形状的矩阵,告诉我哪个位置是PAD部分,之后在计算计算softmax之前会把这里置为无穷大; ## 一定需要注意的是这里得到的矩阵形状是batch_size x len_q x len_k,我们是对k中的pad符号进行标识,并没有对k中的做标识,因为没必要 ## seq_q 和 seq_k 不一定一致,在交互注意力,q来自解码端,k来自编码端,所以告诉模型编码这边pad符号信息就可以,解码端的pad信息在交互注意力层是没有用到的; def get_attn_pad_mask(seq_q, seq_k): batch_size, len_q = seq_q.size() batch_size, len_k = seq_k.size() # eq(zero) is PAD token pad_attn_mask = seq_k.data.eq(0).unsqueeze(1) # batch_size x 1 x len_k, one is masking return pad_attn_mask.expand(batch_size, len_q, len_k) # batch_size x len_q x len_k ## 3. PositionalEncoding 代码实现 class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() ## 位置编码的实现其实很简单,直接对照着公式去敲代码就可以,下面这个代码只是其中一种实现方式; ## 从理解来讲,需要注意的就是偶数和奇数在公式上有一个共同部分,我们使用log函数把次方拿下来,方便计算; ## pos代表的是单词在句子中的索引,这点需要注意;比如max_len是128个,那么索引就是从0,1,2,...,127 ##假设我的demodel是512,2i那个符号中i从0取到了255,那么2i对应取值就是0,2,4...510 self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term)## 这里需要注意的是pe[:, 0::2]这个用法,就是从0开始到最后面,补长为2,其实代表的就是偶数位置 pe[:, 1::2] = torch.cos(position * div_term)##这里需要注意的是pe[:, 1::2]这个用法,就是从1开始到最后面,补长为2,其实代表的就是奇数位置 ## 上面代码获取之后得到的pe:[max_len*d_model] ## 下面这个代码之后,我们得到的pe形状是:[max_len*1*d_model] pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) ## 定一个缓冲区,其实简单理解为这个参数不更新就可以 def forward(self, x): """ x: [seq_len, batch_size, d_model] """ x = x + self.pe[:x.size(0), :] return self.dropout(x) ## 5. EncoderLayer :包含两个部分,多头注意力机制和前馈神经网络 class EncoderLayer(nn.Module): def __init__(self): super(EncoderLayer, self).__init__() self.enc_self_attn = MultiHeadAttention() self.pos_ffn = PoswiseFeedForwardNet() def forward(self, enc_inputs, enc_self_attn_mask): ## 下面这个就是做自注意力层,输入是enc_inputs,形状是[batch_size x seq_len_q x d_model] 需要注意的是最初始的QKV矩阵是等同于这个输入的,去看一下enc_self_attn函数 6. enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,V enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size x len_q x d_model] return enc_outputs, attn ## 2. Encoder 部分包含三个部分:词向量embedding,位置编码部分,注意力层及后续的前馈神经网络 class Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() self.src_emb = nn.Embedding(src_vocab_size, d_model) ## 这个其实就是去定义生成一个矩阵,大小是 src_vocab_size * d_model self.pos_emb = PositionalEncoding(d_model) ## 位置编码情况,这里是固定的正余弦函数,也可以使用类似词向量的nn.Embedding获得一个可以更新学习的位置编码 self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)]) ## 使用ModuleList对多个encoder进行堆叠,因为后续的encoder并没有使用词向量和位置编码,所以抽离出来; def forward(self, enc_inputs): ## 这里我们的 enc_inputs 形状是: [batch_size x source_len] ## 下面这个代码通过src_emb,进行索引定位,enc_outputs输出形状是[batch_size, src_len, d_model] enc_outputs = self.src_emb(enc_inputs) #把数字索引转化为对应的向量 ## 这里就是位置编码,把两者相加放入到了这个函数里面,从这里可以去看一下位置编码函数的实现;3. enc_outputs = self.pos_emb(enc_outputs.transpose(0, 1)).transpose(0, 1) ##get_attn_pad_mask是为了得到句子中pad的位置信息,给到模型后面,在计算自注意力和交互注意力的时候去掉pad符号的影响,去看一下这个函数 4. enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs) enc_self_attns = [] for layer in self.layers: ## 去看EncoderLayer 层函数 5. enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask) enc_self_attns.append(enc_self_attn) return enc_outputs, enc_self_attns ## 10. class DecoderLayer(nn.Module): def __init__(self): super(DecoderLayer, self).__init__() self.dec_self_attn = MultiHeadAttention() self.dec_enc_attn = MultiHeadAttention() self.pos_ffn = PoswiseFeedForwardNet() def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask): dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask) dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask) dec_outputs = self.pos_ffn(dec_outputs) return dec_outputs, dec_self_attn, dec_enc_attn ## 9. Decoder class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model) self.pos_emb = PositionalEncoding(d_model) self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)]) def forward(self, dec_inputs, enc_inputs, enc_outputs): # dec_inputs : [batch_size x target_len] dec_outputs = self.tgt_emb(dec_inputs) # [batch_size, tgt_len, d_model] dec_outputs = self.pos_emb(dec_outputs.transpose(0, 1)).transpose(0, 1) # [batch_size, tgt_len, d_model] ## get_attn_pad_mask 自注意力层的时候的pad 部分 dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs) ## get_attn_subsequent_mask 这个做的是自注意层的mask部分,就是当前单词之后看不到,使用一个上三角为1的矩阵 dec_self_attn_subsequent_mask = get_attn_subsequent_mask(dec_inputs) ## 两个矩阵相加,大于0的为1,不大于0的为0,为1的在之后就会被fill到无限小 dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0) ## 这个做的是交互注意力机制中的mask矩阵,enc的输入是k,我去看这个k里面哪些是pad符号,给到后面的模型;注意哦,我q肯定也是有pad符号,但是这里我不在意的,之前说了好多次了哈 dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs) dec_self_attns, dec_enc_attns = [], [] for layer in self.layers: dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask) dec_self_attns.append(dec_self_attn) dec_enc_attns.append(dec_enc_attn) return dec_outputs, dec_self_attns, dec_enc_attns ## 1. 从整体网路结构来看,分为三个部分:编码层,解码层,输出层 class Transformer(nn.Module): def __init__(self): super(Transformer, self).__init__() self.encoder = Encoder() ## 编码层 self.decoder = Decoder() ## 解码层 # 输出层 d_model 是我们解码层每个token输出的维度大小,之后会做一个 tgt_vocab_size 大小的softmax self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False) def forward(self, enc_inputs, dec_inputs): # 这里有两个数据进行输入,一个是enc_inputs 形状为[batch_size, src_len],主要是作为编码段的输入,一个dec_inputs,形状为[batch_size, tgt_len],主要是作为解码端的输入 # enc_inputs作为输入 形状为[batch_size, src_len],输出由自己的函数内部指定,想要什么指定输出什么,可以是全部tokens的输出,可以是特定每一层的输出;也可以是中间某些参数的输出; # enc_outputs就是主要的输出,enc_self_attns这里没记错的是QK转置相乘之后softmax之后的矩阵值,代表的是每个单词和其他单词相关性; enc_outputs, enc_self_attns = self.encoder(enc_inputs) # dec_outputs 是decoder主要输出,用于后续的linear映射; dec_self_attns类比于enc_self_attns 是查看每个单词对decoder中输入的其余单词的相关性;dec_enc_attns是decoder中每个单词对encoder中每个单词的相关性; dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs) # dec_outputs做映射到词表大小 dec_logits = self.projection(dec_outputs) # dec_logits : [batch_size x src_vocab_size x tgt_vocab_size] return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns if __name__ == '__main__': ## 句子的输入部分, sentences = ['ich mochte ein bier P', 'S i want a beer', 'i want a beer E'] # Transformer Parameters # Padding Should be Zero ## 构建词表 src_vocab = {'P': 0, 'ich': 1, 'mochte': 2, 'ein': 3, 'bier': 4} src_vocab_size = len(src_vocab) tgt_vocab = {'P': 0, 'i': 1, 'want': 2, 'a': 3, 'beer': 4, 'S': 5, 'E': 6} tgt_vocab_size = len(tgt_vocab) src_len = 5 # length of source tgt_len = 5 # length of target # 模型参数 d_model = 512 # Embedding Size d_ff = 2048 # FeedForward dimension d_k = d_v = 64 # dimension of K(=Q), V n_layers = 6 # number of Encoder of Decoder Layer n_heads = 8 # number of heads in Multi-Head Attention model = Transformer() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) enc_inputs, dec_inputs, target_batch = make_batch(sentences) for epoch in range(20): optimizer.zero_grad() outputs, enc_self_attns, dec_self_attns, dec_enc_attns = model(enc_inputs, dec_inputs) loss = criterion(outputs, target_batch.contiguous().view(-1)) print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss)) loss.backward() optimizer.step()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。