当前位置:   article > 正文

详解seq2seq

seq2seq

1. 什么是seq2seq

在⾃然语⾔处理的很多应⽤中,输⼊和输出都可以是不定⻓序列。以机器翻译为例,输⼊可以是⼀段不定⻓的英语⽂本序列,输出可以是⼀段不定⻓的法语⽂本序列,例如:

英语输⼊:“They”、“are”、“watching”、“.”

法语输出:“Ils”、“regardent”、“.”

当输⼊和输出都是不定⻓序列时,我们可以使⽤编码器—解码器(encoder-decoder)或者seq2seq模型。序列到序列模型,简称seq2seq模型。这两个模型本质上都⽤到了两个循环神经⽹络,分别叫做编码器和解码器。编码器⽤来分析输⼊序列,解码器⽤来⽣成输出序列。两 个循环神经网络是共同训练的。

下图描述了使⽤编码器—解码器将上述英语句⼦翻译成法语句⼦的⼀种⽅法。在训练数据集中,我们可以在每个句⼦后附上特殊符号“”(end of sequence)以表⽰序列的终⽌。编码器每个时间步的输⼊依次为英语句⼦中的单词、标点和特殊符号“”。下图中使⽤了编码器在 最终时间步的隐藏状态作为输⼊句⼦的表征或编码信息。解码器在各个时间步中使⽤输⼊句⼦的 编码信息和上个时间步的输出以及隐藏状态作为输⼊。我们希望解码器在各个时间步能正确依次 输出翻译后的法语单词、标点和特殊符号“”。需要注意的是,解码器在最初时间步的输⼊ ⽤到了⼀个表⽰序列开始的特殊符号“”(beginning of sequence)。

img

2. 编码器

编码器的作⽤是把⼀个不定⻓的输⼊序列变换成⼀个定⻓的背景变量 c,并在该背景变量中编码输⼊序列信息。常⽤的编码器是循环神经⽹络。

让我们考虑批量⼤小为1的时序数据样本。假设输⼊序列是 x1, . . . , xT,例如 xi 是输⼊句⼦中的第 i 个词。在时间步 t,循环神经⽹络将输⼊ xt 的特征向量 xt 和上个时间步的隐藏状态ht−1ht−1变换为当前时间步的隐藏状态ht。我们可以⽤函数 f 表达循环神经⽹络隐藏层的变换:

ht=f(xt,ht−1)ht=f(xt,ht−1)

接下来,编码器通过⾃定义函数 q 将各个时间步的隐藏状态变换为背景变量:

c=q(h1,…,hT)c=q(h1,…,hT)

例如,当选择 q(***h*1, . . . , ***h***T<

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/346322
推荐阅读
相关标签
  

闽ICP备14008679号