赞
踩
在实际应用中为了计算更为方便,例如在编程中都是使用矩阵进行计算(参考 编程作业(2)逻辑回归),我们可以将整个模型向量化。
对于整个训练集而言:
和线性回归一样,用 特征矩阵
X
X
X 来描述所有特征,用参数向量
θ
\theta
θ 来描述所有参数,用输出向量
y
y
y 表示所有输出变量:
X
=
[
x
0
(
1
)
x
1
(
1
)
x
2
(
1
)
⋅
⋅
⋅
x
n
(
1
)
x
0
(
2
)
x
1
(
2
)
x
2
(
2
)
⋅
⋅
⋅
x
n
(
2
)
:
:
:
⋅
⋅
⋅
:
x
0
(
m
)
x
1
(
m
)
x
2
(
m
)
⋅
⋅
⋅
x
n
(
m
)
]
,
θ
=
[
θ
0
θ
1
:
θ
n
]
,
y
=
[
y
(
1
)
y
(
2
)
:
y
(
m
)
]
X=
整个训练集 的 所有假设结果 也可以用一个
m
∗
1
m*1
m∗1 维的向量表示:
h
θ
(
x
)
=
g
(
X
θ
)
=
[
g
(
x
0
(
1
)
θ
0
+
x
1
(
1
)
θ
1
+
x
2
(
1
)
θ
2
+
⋅
⋅
⋅
+
x
n
(
1
)
θ
n
)
g
(
x
0
(
2
)
θ
0
+
x
1
(
2
)
θ
1
+
x
2
(
2
)
θ
2
+
⋅
⋅
⋅
+
x
n
(
2
)
θ
n
)
:
g
(
x
0
(
m
)
θ
0
+
x
1
(
m
)
θ
1
+
x
2
(
m
)
θ
2
+
⋅
⋅
⋅
+
x
n
(
m
)
θ
n
)
]
=
[
h
θ
(
x
(
1
)
)
h
θ
(
x
(
2
)
)
:
h
θ
(
x
(
m
)
)
]
=
y
^
=
[
y
^
(
1
)
y
^
(
2
)
:
y
^
(
m
)
]
h_\theta(x)=g(X\theta)=
原始公式:
J
(
θ
)
=
−
1
m
∑
i
=
1
m
[
y
(
i
)
∗
log
(
h
θ
(
x
(
i
)
)
)
+
(
1
−
y
(
i
)
)
∗
log
(
1
−
h
θ
(
x
(
i
)
)
)
]
=
−
1
m
∑
i
=
1
m
[
y
(
i
)
∗
log
(
y
^
(
i
)
)
+
(
1
−
y
(
i
)
)
∗
log
(
1
−
y
^
(
i
)
)
]
J
(
θ
)
=
−
1
m
S
U
M
[
y
∗
log
(
h
θ
(
x
)
)
+
(
1
−
y
)
∗
log
(
1
−
h
θ
(
x
)
)
]
=
−
1
m
S
U
M
[
y
∗
log
(
y
^
)
+
(
1
−
y
)
∗
log
(
1
−
y
^
)
]
原公式为:
θ
j
:
=
θ
j
−
α
1
m
∑
i
=
1
m
(
h
θ
(
x
(
i
)
)
−
y
(
i
)
)
x
j
(
i
)
\theta_j:=\theta_j-\alpha\frac{1}{m} \displaystyle\sum_{i=1}^{m} ( h_θ( x^{(i)} ) - y^{(i)})x_j^{(i)}
θj:=θj−αm1i=1∑m(hθ(x(i))−y(i))xj(i)现用向量来表示所有参数的更新过程:
θ
=
θ
−
α
δ
\theta=\theta-\alpha\delta
θ=θ−αδ其中:
θ
=
[
θ
0
θ
1
:
θ
n
]
,
δ
=
1
m
[
∑
i
=
1
m
(
h
θ
(
x
(
i
)
)
−
y
(
i
)
)
x
0
(
i
)
∑
i
=
1
m
(
h
θ
(
x
(
i
)
)
−
y
(
i
)
)
x
1
(
i
)
⋅
⋅
⋅
⋅
⋅
⋅
∑
i
=
1
m
(
h
θ
(
x
(
i
)
)
−
y
(
i
)
)
x
n
(
i
)
]
\theta=
δ
=
1
m
[
x
0
(
1
)
x
0
(
2
)
⋅
⋅
⋅
x
0
(
m
)
x
1
(
1
)
x
1
(
2
)
⋅
⋅
⋅
x
1
(
m
)
:
:
⋅
⋅
⋅
:
x
0
(
1
)
x
0
(
2
)
⋅
⋅
⋅
x
0
(
m
)
]
[
h
θ
(
x
(
1
)
)
−
y
(
1
)
h
θ
(
x
(
2
)
)
−
y
(
2
)
⋅
⋅
⋅
⋅
⋅
⋅
h
θ
(
x
(
m
)
)
−
y
(
m
)
]
=
1
m
X
T
[
g
(
X
θ
)
−
y
]
\delta=\frac{1}{m}
θ
=
θ
−
α
1
m
X
T
[
g
(
X
θ
)
−
y
]
\theta=\theta-\alpha\frac{1}{m}X^T\left [ g(X\theta)-y \right]
θ=θ−αm1XT[g(Xθ)−y]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。