当前位置:   article > 正文

离线知识库服务(Langchain-Chatchat)本地搭建_bge-large-zh-v1.5

bge-large-zh-v1.5

基于模型的离线知识库的应用,这样的应用服务目前正在遍地开花,选择一个好的模型应用服务是能把大模型的能力充分利用的(Langchain-Chatchat)。

如果基础环境没有布置好可以参考我上篇文章《Ubuntu 22.04 Tesla V100s显卡驱动,CUDA,cuDNN,MiniCONDA3 环境的安装》。

Langchain-Chatchat

基于 ChatGLM 等大语言模型与 Langchain 等应用框架实现,开源、可离线部署的检索增强生成(RAG)大模型知识库项目。
一种利用 langchain 思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。

简单来讲,它就是一个离线部署版的AI大模型知识库。

接下来,会根据清华大模型(ChatGLM3-6B),进行配置进行示例。

另外我想说的是现在是一个对大模型应用的高峰期,毕竟有数据并能训练的是少数,所以,很多都转移到对这个大模型的应用上来了,早期的 AutoGPT,然后,Langchain-Chatchat,Langflow 以及 微软的 Semantic Kernel 都是在增加对大模型的应用侧,业务侧 发力,使其能真正的落地。

所以,关注这些会更好玩。

Langchain 原理


基本原理就如此图所示

官方解释:

过程包括加载文件 -> 读取文本 -> 文本分割 -> 文本向量化 -> 问句向量化 -> 在文本向量中匹配出与问句向量最相似的 top k个 -> 匹配出的文本作为上下文和问题一起添加到 prompt中 -> 提交给 LLM生成回答。

我自己的理解

本地的知识库(HTML、MD、JSON、CSV、PDF、PNG、JPG、BMP、TXT、XML、DOCX、PPT、PPTX)等文件,会通过各种解析或者识别方式把内容文本信息,提取出来(对应非结构化加载器),然后,对文本信息进行标准化分割(就是分段,就一定规则可配置),然后,把处理后的文本向量化存入到向量数据库里。

当你进行问答的时候,会把你的问题也向量化,通过向量相似度匹配的方式,把向量数据库里跟问题相关的知识段内容查询出来,当做大模型问答 Prompt(提词器)的【知识】进行提供。

这样就会形成一个 知识 + 问题 为问题的结构,扔给大模型,大模型就会根据自身的知识内容以及你提供的【知识】一起组合成一个答案给你(当然,这个答案是随机的)。

Langchain-Chatchat 部署

https://github.com/chatchat-space/Langchain-Chatchat
  • 1

先下载 Langchain-Chatchat 服务

直接就下载完毕,剩下的就是配置信息了

然后,继续搞个 python 环境管理

conda create --name langchat python=3.10
conda activate langchat
  • 1
  • 2

然后,进入到主项目中,开始配置一些环境

cd Langchain-Chatchat
  • 1

第一步是要安装python 的依赖包

pip install -r requirements.txt -i https://mirror.sjtu.edu.cn/pypi/web/simple
pip install -r requirements_api.txt -i https://mirror.sjtu.edu.cn/pypi/web/simple
pip install -r requirements_webui.txt -i https://mirror.sjtu.edu.cn/pypi/web/simple
  • 1
  • 2
  • 3

下载模型

如果没有下载 ChatGLM3-6B ,那么,还得下载这个模型,另外还得下载一个模型

当然,尽量以官方地址的 README.md 文档来,我这个只是根据当下的情况的一个实际选择。

git lfs install
git clone https://huggingface.co/THUDM/chatglm3-6b
git clone https://huggingface.co/BAAI/bge-large-zh
  • 1
  • 2
  • 3


看一下大小 11.6GB ,还挺大的


而 bge-large-zh 就只有 3.12GB ,小很多了

Langchain-Chatchat 配置

初始化知识库和配置文件

python copy_config_example.py
  • 1

设置完之后,要进入到,配置文件夹 configs里面配置相关的配置

我的配置如下:

model_config.py (重点)

大部分需要配置的都在这个里面

下面这个默认模型 我只保留了一个

LLM_MODELS = ["chatglm3-6b"] # "zhipu-api", "openai-api"  "Qwen-1_8B-Chat",
  • 1

在 MODEL_PATH 这里,需要配置模型的文件夹位置

"bge-large-zh": "BAAI/bge-large-zh",
  • 1

改为

"bge-large-zh": "/data/ai/chatglm3/bge-large-zh",
  • 1

即可

而 llm_model 我这边修改

"chatglm3-6b": "THUDM/chatglm3-6b",
  • 1

"chatglm3-6b": "/data/ai/chatglm3/chatglm3-6b",
  • 1

并且也可以看到,里面实际上有很多的模型

模型信息展示(修改后)

MODEL_PATH = {
"embed_model": {
    "ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
    "ernie-base": "nghuyong/ernie-3.0-base-zh",
    "text2vec-base": "shibing624/text2vec-base-chinese",
    "text2vec": "GanymedeNil/text2vec-large-chinese",
    "text2vec-paraphrase": "shibing624/text2vec-base-chinese-paraphrase",
    "text2vec-sentence": "shibing624/text2vec-base-chinese-sentence",
    "text2vec-multilingual": "shibing624/text2vec-base-multilingual",
    "text2vec-bge-large-chinese": "shibing624/text2vec-bge-large-chinese",
    "m3e-small": "moka-ai/m3e-small",
    "m3e-base": "moka-ai/m3e-base",
    "m3e-large": "moka-ai/m3e-large",
    "bge-small-zh": "BAAI/bge-small-zh",
    "bge-base-zh": "BAAI/bge-base-zh",
    "bge-large-zh": "/data/ai/chatglm3/bge-large-zh",
    "bge-large-zh-noinstruct": "BAAI/bge-large-zh-noinstruct",
    "bge-base-zh-v1.5": "BAAI/bge-base-zh-v1.5",
    "bge-large-zh-v1.5": "BAAI/bge-large-zh-v1.5",
    "piccolo-base-zh": "sensenova/piccolo-base-zh",
    "piccolo-large-zh": "sensenova/piccolo-large-zh",
    "nlp_gte_sentence-embedding_chinese-large": "damo/nlp_gte_sentence-embedding_chinese-large",
    "text-embedding-ada-002": "your OPENAI_API_KEY",
},

"llm_model": {
"chatglm2-6b": "THUDM/chatglm2-6b",
"chatglm2-6b-32k": "THUDM/chatglm2-6b-32k",

"chatglm3-6b": "/data/ai/chatglm3/chatglm3-6b",
"chatglm3-6b-32k": "THUDM/chatglm3-6b-32k",
"chatglm3-6b-base": "THUDM/chatglm3-6b-base",

"Qwen-1_8B": "Qwen/Qwen-1_8B",
"Qwen-1_8B-Chat": "Qwen/Qwen-1_8B-Chat",
"Qwen-1_8B-Chat-Int8": "Qwen/Qwen-1_8B-Chat-Int8",
"Qwen-1_8B-Chat-Int4": "Qwen/Qwen-1_8B-Chat-Int4",

"Qwen-7B": "Qwen/Qwen-7B",
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat",

"Qwen-14B": "Qwen/Qwen-14B",
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat",
"Qwen-14B-Chat-Int8": "Qwen/Qwen-14B-Chat-Int8",
"Qwen-14B-Chat-Int4": "Qwen/Qwen-14B-Chat-Int4",

"Qwen-72B": "Qwen/Qwen-72B",
"Qwen-72B-Chat": "Qwen/Qwen-72B-Chat",
"Qwen-72B-Chat-Int8": "Qwen/Qwen-72B-Chat-Int8",
"Qwen-72B-Chat-Int4": "Qwen/Qwen-72B-Chat-Int4",

"baichuan2-13b": "baichuan-inc/Baichuan2-13B-Chat",
"baichuan2-7b": "baichuan-inc/Baichuan2-7B-Chat",

"baichuan-7b": "baichuan-inc/Baichuan-7B",
"baichuan-13b": "baichuan-inc/Baichuan-13B",
"baichuan-13b-chat": "baichuan-inc/Baichuan-13B-Chat",

"aquila-7b": "BAAI/Aquila-7B",
"aquilachat-7b": "BAAI/AquilaChat-7B",

"internlm-7b": "internlm/internlm-7b",
"internlm-chat-7b": "internlm/internlm-chat-7b",

"falcon-7b": "tiiuae/falcon-7b",
"falcon-40b": "tiiuae/falcon-40b",
"falcon-rw-7b": "tiiuae/falcon-rw-7b",

"gpt2": "gpt2",
"gpt2-xl": "gpt2-xl",

"gpt-j-6b": "EleutherAI/gpt-j-6b",
"gpt4all-j": "nomic-ai/gpt4all-j",
"gpt-neox-20b": "EleutherAI/gpt-neox-20b",
"pythia-12b": "EleutherAI/pythia-12b",
"oasst-sft-4-pythia-12b-epoch-3.5": "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
"dolly-v2-12b": "databricks/dolly-v2-12b",
"stablelm-tuned-alpha-7b": "stabilityai/stablelm-tuned-alpha-7b",

"Llama-2-13b-hf": "meta-llama/Llama-2-13b-hf",
"Llama-2-70b-hf": "meta-llama/Llama-2-70b-hf",
"open_llama_13b": "openlm-research/open_llama_13b",
"vicuna-13b-v1.3": "lmsys/vicuna-13b-v1.3",
"koala": "young-geng/koala",

"mpt-7b": "mosaicml/mpt-7b",
"mpt-7b-storywriter": "mosaicml/mpt-7b-storywriter",
"mpt-30b": "mosaicml/mpt-30b",
"opt-66b": "facebook/opt-66b",
"opt-iml-max-30b": "facebook/opt-iml-max-30b",

"agentlm-7b": "THUDM/agentlm-7b",
"agentlm-13b": "THUDM/agentlm-13b",
"agentlm-70b": "THUDM/agentlm-70b",

"Yi-34B-Chat": "01-ai/Yi-34B-Chat",
},

支持AGENT模型有: 
SUPPORT_AGENT_MODEL = [
    "azure-api",
    "openai-api",
    "qwen-api",
    "Qwen",
    "chatglm3",
    "xinghuo-api",
]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107

什么是Agent(人工智能体)

AI Agent(人工智能体)是一种能够感知环境、进行决策和执行动作的智能实体。不同于传统的人工智能,AI Agent 具备通过独立思考、调用工具去逐步完成给定目标的能力。

这个也是AutoGPT开源项目之后的一个新概念,通俗的来讲,就是这个大模型里集成了很多的工具,你可以让大模型自动调用你的工具来实现相关的业务,而这样的工具可能非常的多。就像RPA工具一样,而发号施令的人已经从人,换成了大模型本身而已。

server_config.py

这个里面可以更改服务的端口等配置信息,我暂时不需要更改,默认。

最后,初始化向量数据库,因为它需要 bge-large-zh 模型

python init_database.py --recreate-vs
  • 1

初始化向量数据库的时候会报一些错误,以下脚本可以解决一部分问题

pip install jq  -i https://mirror.sjtu.edu.cn/pypi/web/simple
  • 1

重新执行之后

向量数据库已经初始化成功

一键启动项目

python startup.py -a
  • 1

可以看已经运行起来了。
打开指定的地址 http://0.0.0.0:8501 //需把 0.0.0.0 替换成服务器自己的地址,然后游览器打开即可

简单的问答

可以看到,问答还是很轻松的,确实是使用的同一个模型 chatglm3-6b

而在对话模式中,还有更多的选择

搜索引擎问答

这个其实是要有相关搜索引擎的key 的,并且还可能需要外网的访问,具体的要在<kb_config.py>配置文件中配置。

本来想试试bing的,结果bing也是需要key的

# 默认搜索引擎。可选:bing, duckduckgo, metaphor
DEFAULT_SEARCH_ENGINE = "duckduckgo"

# Bing 搜索必备变量
# 使用 Bing 搜索需要使用 Bing Subscription Key,需要在azure port中申请试用bing search
# 具体申请方式请见
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/create-bing-search-service-resource
# 使用python创建bing api 搜索实例详见:
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/quickstarts/rest/python
BING_SEARCH_URL = "https://api.bing.microsoft.com/v7.0/search"
# 注意不是bing Webmaster Tools的api key,

# 此外,如果是在服务器上,报Failed to establish a new connection: [Errno 110] Connection timed out
# 是因为服务器加了防火墙,需要联系管理员加白名单,如果公司的服务器的话,就别想了GG
BING_SUBSCRIPTION_KEY = ""

# metaphor搜索需要KEY
METAPHOR_API_KEY = ""
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

知识库问答 (重点)

可以在左侧菜单选择知识库问答,在右侧就可以看到知识库的相关信息

当然,也可以新建知识库

当然,默认知识库里已经导入了很多的文件了

可以根据这些已有的知识进行问答。

可以很清晰的看到,它确实根据已有的离线知识库进行了回答。

总结

总得来说今年是AIGC,AI大模型的元年,可以很清晰的看到,微软,OpenAi,百度,等等都在对AI大模型的应用在大力推动,我想多接触和了解这些是很有必要的。

现在这些模型的应用已经产生了业务级的影响,也是我所需要的。

参考资料地址

《清华ChatGLM3 ChatGLM3-6B 大模型》
https://github.com/THUDM/ChatGLM3
《Langchain-Chatchat(原Langchain-ChatGLM)》
https://github.com/chatchat-space/Langchain-Chatchat
  • 1
  • 2
  • 3
  • 4

一键三连呦!,感谢大佬的支持,您的支持就是我的动力!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/365968
推荐阅读
相关标签
  

闽ICP备14008679号