赞
踩
模型为YOLOv5s(v7.0)
加载模型---动态resize图片大小---归一化---HWC转CHW---扩展维度---numpy转tensor---转float32---预测--NMS--将检测框缩放至原始图尺寸--你需要的功能(截图、画检测框等)
导入cv2和numpy、torch库,从general.py中导入non_max_suppression(NMS,用于去除重复框),scale_boxes(将检测框缩放至原图片上)。
- import cv2
- import numpy as np
- import torch
- from utils.general import non_max_suppression, scale_boxes
- from utils.plots import save_one_box2 #自己写的,根据检测框保存截图
- import cv2
- import numpy as np
- import torch
- from utils.general import non_max_suppression, scale_boxes
- from utils.plots import save_one_box2 #自己写的,根据检测框保存截图
- if __name__ == "__main__":
- device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') #检测是否有gpu,有则使用gpu
- weights = 'best.pt' #模型权重地址
- img0 = cv2.imread('test/ori_images/9.jpg') #读取图片
- w = str (weights) #将权重地址转换为字符串
- #加载模型
- model=torch.load(w, map_location=device)['model'].float().fuse().eval() #加载模型,float()转换为float32,fuse()融合模型加速推理,eval()评估模式
- ###############################动态调整图片大小##############################################
- height, width = img0.shape[:2]
- #比较宽和高大小,将最大的设为640
- if height > width:
- target = 640
- scale = target / height
- # 计算缩放后的尺寸,高度向下取整至32的倍数
- new_width = int(width * scale / 32) * 32
- new_height = target
- else:
- target= 640
- scale = target / width
- # 计算缩放后的尺寸,高度向下取整至32的倍数
- new_height= int(height * scale / 32) * 32
- new_width = target
- # 缩放图像
- img = cv2.resize(img0, (new_width,new_height ))
- ############################################################################################
- img = img / 255. #归一化至[0,1]
- img = img[:, :, ::-1].transpose((2, 0, 1)) #HWC转CHW
- img = np.expand_dims(img, axis=0) #扩展维度至[1,3,new_height,new_width]
- img = torch.from_numpy(img.copy()) #numpy转tensor
- img = img.to(torch.float32) #float64转换float32
- img = img.to(device) #cpu转gpu
- pred = model(img)
- # pred.clone().detach()
- pred = non_max_suppression(pred, 0.25, 0.45, None, False, max_det=1000) #非极大值抑制,去除重复框
- for i, det in enumerate(pred):
- if len(det):
- det[:, :4] = scale_boxes(img.shape[2:], det[:, :4], img0.shape).round() #将预测框缩放至原图尺寸
- for *xyxy, conf, cls in reversed(det):
- img0=cv2.rectangle(img0, (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3])), (0, 0, 255), 2)
- img0=cv2.putText(img0, str(int(cls)), (int(xyxy[0]), int(xyxy[1])), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
- save_one_box2(xyxy, img0, file='out2.jpg')
- cv2.imwrite('out.jpg', img0)
使用动态resize
直接resize(img,(640,640))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。