赞
踩
Java 里提供了一些用于生成随机数的工具类,这里分析一下其实现原理,以及他们之间的区别、使用场景。
Random 是比较常用的随机数生成类,它的基本信息在类的注释里都写到了,下面是 JDK8 里该类的注释:
- /**
- * An instance of this class is used to generate a stream of
- * pseudorandom numbers. The class uses a 48-bit seed, which is
- * modified using a linear congruential formula. (See Donald Knuth,
- * <i>The Art of Computer Programming, Volume 2</i>, Section 3.2.1.)
- * <p>
- * If two instances of {@code Random} are created with the same
- * seed, and the same sequence of method calls is made for each, they
- * will generate and return identical sequences of numbers. In order to
- * guarantee this property, particular algorithms are specified for the
- * class {@code Random}. Java implementations must use all the algorithms
- * shown here for the class {@code Random}, for the sake of absolute
- * portability of Java code. However, subclasses of class {@code Random}
- * are permitted to use other algorithms, so long as they adhere to the
- * general contracts for all the methods.
- * <p>
- * The algorithms implemented by class {@code Random} use a
- * {@code protected} utility method that on each invocation can supply
- * up to 32 pseudorandomly generated bits.
- * <p>
- * Many applications will find the method {@link Math#random} simpler to use.
- *
- * <p>Instances of {@code java.util.Random} are threadsafe.
- * However, the concurrent use of the same {@code java.util.Random}
- * instance across threads may encounter contention and consequent
- * poor performance. Consider instead using
- * {@link java.util.concurrent.ThreadLocalRandom} in multithreaded
- * designs.
- *
- * <p>Instances of {@code java.util.Random} are not cryptographically
- * secure. Consider instead using {@link java.security.SecureRandom} to
- * get a cryptographically secure pseudo-random number generator for use
- * by security-sensitive applications.
- *
- * @author Frank Yellin
- * @since 1.0
- */
翻译一下,主要有以下几点:
Random 类使用线性同余法 linear congruential formula 来生成伪随机数。
两个 Random 实例,如果使用相同的种子 seed,那他们产生的随机数序列也是一样的。
Random 是线程安全的,你的程序如果对性能要求比较高的话,推荐使用 ThreadLocalRandom。
Random 不是密码学安全的,加密相关的推荐使用 SecureRandom。
Random 的基本用法如下所示:
- Random random = new Random();
- int r = random.nextInt(); // 生成一个随机数
从下面的源码中可以看到,Random 的默认使用当前系统时钟来生成种子 seed。
- private static final AtomicLong seedUniquifier = new AtomicLong(8682522807148012L);
- public Random() {
- this(seedUniquifier() ^ System.nanoTime());
- }
-
- public Random(long seed) {
- if (getClass() == Random.class)
- this.seed = new AtomicLong(initialScramble(seed));
- else {
- // subclass might have overriden setSeed
- this.seed = new AtomicLong();
- setSeed(seed);
- }
- }
-
- private static long seedUniquifier() {
- for (;;) {
- long current = seedUniquifier.get();
- long next = current * 181783497276652981L;
- if (seedUniquifier.compareAndSet(current, next))
- return next;
- }
- }
介绍 Random 类时提到过,要生成加密基本的随机数应该使用 SecureRandom 类,该类信息如下所示:
- /**
- * This class provides a cryptographically strong random number
- * generator (RNG).
- *
- * <p>A cryptographically strong random number
- * minimally complies with the statistical random number generator tests
- * specified in <a href="http://csrc.nist.gov/cryptval/140-2.htm">
- * <i>FIPS 140-2, Security Requirements for Cryptographic Modules</i></a>,
- * section 4.9.1.
- * Additionally, SecureRandom must produce non-deterministic output.
- * Therefore any seed material passed to a SecureRandom object must be
- * unpredictable, and all SecureRandom output sequences must be
- * cryptographically strong, as described in
- * <a href="http://www.ietf.org/rfc/rfc1750.txt">
- * <i>RFC 1750: Randomness Recommendations for Security</i></a>.
- *
- * <p>A caller obtains a SecureRandom instance via the
- * no-argument constructor or one of the {@code getInstance} methods:
- *
- * <pre>
- * SecureRandom random = new SecureRandom();
- * </pre>
- *
- * <p> Many SecureRandom implementations are in the form of a pseudo-random
- * number generator (PRNG), which means they use a deterministic algorithm
- * to produce a pseudo-random sequence from a true random seed.
- * Other implementations may produce true random numbers,
- * and yet others may use a combination of both techniques.
- *
- * <p> Typical callers of SecureRandom invoke the following methods
- * to retrieve random bytes:
- *
- * <pre>
- * SecureRandom random = new SecureRandom();
- * byte bytes[] = new byte[20];
- * random.nextBytes(bytes);
- * </pre>
- *
- * <p> Callers may also invoke the {@code generateSeed} method
- * to generate a given number of seed bytes (to seed other random number
- * generators, for example):
- * <pre>
- * byte seed[] = random.generateSeed(20);
- * </pre>
- *
- * Note: Depending on the implementation, the {@code generateSeed} and
- * {@code nextBytes} methods may block as entropy is being gathered,
- * for example, if they need to read from /dev/random on various Unix-like
- * operating systems.
- */
主要有以下几点:
该类提供了能满足加密要求的强随机数生成器。
传递给 SecureRandom 种子必须是不可预测的,seed 使用不当引发的安全漏洞可以看看 比特币电子钱包漏洞。
一般使用默认的种子生成策略就行,对应 Linux 里面就是 /dev/random 和 /dev/urandom。其实现原理是:操作系统收集了一些随机事件,比如鼠标点击,键盘点击等等,SecureRandom 使用这些随机事件作为种子。
使用 /dev/random 来生成种子时,可能会因为熵不够而阻塞,性能比较差。
SecureRandom 用法如下所示:
- SecureRandom random = new SecureRandom();
- byte[] data = random.nextBytes(16);
下面我们看看其内部实现:
- synchronized public void nextBytes(byte[] bytes) {
- secureRandomSpi.engineNextBytes(bytes);
- }
- public SecureRandom() {
- super(0);
- getDefaultPRNG(false, null);
- }
- private void getDefaultPRNG(boolean setSeed, byte[] seed) {
- String prng = getPrngAlgorithm();
- if (prng == null) {
- // bummer, get the SUN implementation
- prng = "SHA1PRNG";
- this.secureRandomSpi = new sun.security.provider.SecureRandom();
- this.provider = Providers.getSunProvider();
- if (setSeed) {
- this.secureRandomSpi.engineSetSeed(seed);
- }
- } else {
- try {
- SecureRandom random = SecureRandom.getInstance(prng);
- this.secureRandomSpi = random.getSecureRandomSpi();
- this.provider = random.getProvider();
- if (setSeed) {
- this.secureRandomSpi.engineSetSeed(seed);
- }
- } catch (NoSuchAlgorithmException nsae) {
- // never happens, because we made sure the algorithm exists
- throw new RuntimeException(nsae);
- }
- }
- if (getClass() == SecureRandom.class) {
- this.algorithm = prng;
- }
- }
在 mac 环境下使用 JDK8 测试时发现,默认使用了 NativePRNG 而非 SHA1PRNG,但是 NativePRNG 其实还是在 sun.security.provider.SecureRandom 的基础上做了一些封装。
在 sun.security.provider.SeedGenerator 类里,可以看到 seed 是利用 /dev/random 或 /dev/urandom 来生成的,启动应用程序时可以通过参数 -Djava.security.egd=file:/dev/urandom 来指定 seed 源。
- static {
- String var0 = SunEntries.getSeedSource();
- if (!var0.equals("file:/dev/random") && !var0.equals("file:/dev/urandom")) {
- if (var0.length() != 0) {
- try {
- instance = new SeedGenerator.URLSeedGenerator(var0);
- if (debug != null) {
- debug.println("Using URL seed generator reading from " + var0);
- }
- } catch (IOException var2) {
- if (debug != null) {
- debug.println("Failed to create seed generator with " + var0 + ": " + var2.toString());
- }
- }
- }
- } else {
- try {
- instance = new NativeSeedGenerator(var0);
- if (debug != null) {
- debug.println("Using operating system seed generator" + var0);
- }
- } catch (IOException var3) {
- if (debug != null) {
- debug.println("Failed to use operating system seed generator: " + var3.toString());
- }
- }
- }
-
- if (instance == null) {
- if (debug != null) {
- debug.println("Using default threaded seed generator");
- }
-
- instance = new SeedGenerator.ThreadedSeedGenerator();
- }
-
- }
在 Random 类里,多个实例设置相同的seed,产生的随机数序列也是一样的。而 SecureRandom 则不同,运行下面的代码:
- public class RandomTest {
- public static void main(String[] args) {
- byte[] seed = "hello".getBytes();
- for (int i = 0; i < 10; ++i) {
- SecureRandom secureRandom = new SecureRandom(seed);
- System.out.println(secureRandom.nextInt());
- }
- }
- }
输出如下所示,每次运行产生的随机数都不一样。
- -2105877601
- 1151182748
- 1329080810
- -617594950
- 2094315881
- -1649759687
- -1360561033
- -653424535
- -927058354
- -1577199965
为什么呢?因为 engineSetSeed 方法设置 seed 时调用的是静态实例 INSTANCE 的 implSetSeed 方法,该方法通过 getMixedRandom 得到的 SecureRandom 来设置 seed,而这个 SecureRandom 初始化种子是系统的。
- private static final NativePRNG.RandomIO INSTANCE;
- // in NativePRNG
- protected void engineSetSeed(byte[] var1) {
- INSTANCE.implSetSeed(var1);
- }
-
- private void implSetSeed(byte[] var1) {
- Object var2 = this.LOCK_SET_SEED;
- synchronized(this.LOCK_SET_SEED) {
- if (!this.seedOutInitialized) {
- this.seedOutInitialized = true;
- this.seedOut = (OutputStream)AccessController.doPrivileged(new PrivilegedAction<OutputStream>() {
- public OutputStream run() {
- try {
- return new FileOutputStream(RandomIO.this.seedFile, true);
- } catch (Exception var2) {
- return null;
- }
- }
- });
- }
-
- if (this.seedOut != null) {
- try {
- this.seedOut.write(var1);
- } catch (IOException var5) {
- throw new ProviderException("setSeed() failed", var5);
- }
- }
-
- this.getMixRandom().engineSetSeed(var1);
- }
- }
-
- private SecureRandom getMixRandom() {
- SecureRandom var1 = this.mixRandom;
- if (var1 == null) {
- Object var2 = this.LOCK_GET_BYTES;
- synchronized(this.LOCK_GET_BYTES) {
- var1 = this.mixRandom;
- if (var1 == null) {
- var1 = new SecureRandom();
-
- try {
- byte[] var3 = new byte[20];
- readFully(this.nextIn, var3);
- var1.engineSetSeed(var3);
- } catch (IOException var5) {
- throw new ProviderException("init failed", var5);
- }
-
- this.mixRandom = var1;
- }
- }
- }
-
- return var1;
- }
-
在 sun.security.provider.SecureRandom.engineSetSeed 方法里,新种子的生成不仅和刚设置的 seed 有关,也和原来的种子(系统产生的 seed)有关。
- // in sun.security.provider.SecureRandom
- public synchronized void engineSetSeed(byte[] var1) {
- if (this.state != null) {
- this.digest.update(this.state);
-
- for(int var2 = 0; var2 < this.state.length; ++var2) {
- this.state[var2] = 0;
- }
- }
-
- this.state = this.digest.digest(var1);
- }
/dev/random 与 /dev/urandom
在 Linux 操作系统中,有一个特殊的设备文件 /dev/random,可以用作随机数发生器或伪随机数发生器。
在读取时,/dev/random 设备会返回小于熵池噪声总数的随机字节。/dev/random 可生成高随机性的公钥或一次性密码本。若熵池空了,对/dev/random的读操作将会被阻塞,直到从别的设备中收集到了足够的环境噪声为止。
当然你也可以设置成不堵塞,当你在 open 的时候设置参数 O_NONBLOCK, 但是当你read 的时候,如果熵池空了,会返回 -1。
/dev/random 的一个副本是 /dev/urandom (“unlocked”,非阻塞的随机数发生器),它会重复使用熵池中的数据以产生伪随机数据。这表示对/dev/urandom的读取操作不会产生阻塞,但其输出的熵可能小于 /dev/random 的。它可以作为生成较低强度密码的伪随机数生成器,不建议用于生成高强度长期密码。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。