当前位置:   article > 正文

torchKeras框架简单介绍

torchkeras

torchkeras 是在pytorch上实现的仿keras的高层次Model接口。有了它,你可以像Keras那样,对pytorch构建的模型进行summary,compile,fit,evaluate , predict五连击。一切都像行云流水般自然。

听起来,torchkeras的功能非常强大。但实际上,它的实现非常简单,全部源代码不足300行。如果你想理解它实现原理的一些细节,或者修改它的功能,不要犹豫阅读和修改项目源码。

安装它仅需要运行:

pip install torchkeras
  • 1

下面是一个使用torchkeras来训练模型的完整范例。我们设计了一个3层的神经网络来解决一个正负样本按照同心圆分布的分类问题。

import numpy as np 
import pandas as pd 
from matplotlib import pyplot as plt
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import Dataset,DataLoader,TensorDataset

from torchkeras import Model,summary #Attention this line!
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

一,准备数据

构造按照同心圆分布的正负样本数据。

%matplotlib inline
%config InlineBackend.figure_format = 'svg'

#number of samples
n_positive,n_negative = 2000,2000

#positive samples
r_p = 5.0 + torch.normal(0.0,1.0,size = [n_positive,1]) 
theta_p = 2*np.pi*torch.rand([n_positive,1])
Xp = torch.cat([r_p*torch.cos(theta_p),r_p*torch.sin(theta_p)],axis = 1)
Yp = torch.ones_like(r_p)

#negative samples
r_n = 8.0 + torch.normal(0.0,1.0,size = [n_negative,1]) 
theta_n = 2*np.pi*torch.rand([n_negative,1])
Xn = torch.cat([r_n*torch.cos(theta_n),r_n*torch.sin(theta_n)],axis = 1)
Yn = torch.zeros_like(r_n)

#concat positive and negative samples
X = torch.cat([Xp,Xn],axis = 0)
Y = torch.cat([Yp,Yn],axis = 0)


#visual samples
plt.figure(figsize = (6,6))
plt.scatter(Xp[:,0],Xp[:,1],c = "r")
plt.scatter(Xn[:,0],Xn[:,1],c = "g")
plt.legend(["positive","negative"]);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

在这里插入图片描述

# split samples into train and valid data.
ds = TensorDataset(X,Y)
ds_train,ds_valid = torch.utils.data.random_split(ds,[int(len(ds)*0.7),len(ds)-int(len(ds)*0.7)])
dl_train = DataLoader(ds_train,batch_size = 100,shuffle=True,num_workers=2)
dl_valid = DataLoader(ds_valid,batch_size = 100,num_workers=2)
  • 1
  • 2
  • 3
  • 4
  • 5

二,构建模型

我们通过对torchkeras.Model进行子类化来构建模型,而不是对torch.nn.Module的子类化来构建模型。实际上 torchkeras.Model是torch.nn.Moduled的子类。

class DNNModel(Model):  ### Attention here
    def __init__(self):
        super(DNNModel, self).__init__()
        self.fc1 = nn.Linear(2,4)
        self.fc2 = nn.Linear(4,8) 
        self.fc3 = nn.Linear(8,1)
        
    def forward(self,x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        y = nn.Sigmoid()(self.fc3(x))
        return y
        
model = DNNModel()
model.summary(input_shape =(2,))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

在这里插入图片描述

三,训练模型

我们需要先用compile将损失函数,优化器以及评估指标和模型绑定。然后就可以用fit方法进行模型训练了。

四、其他的例子——完整过程

class CnnModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.layers = nn.ModuleList([
            nn.Conv2d(in_channels=1,out_channels=32,kernel_size = 3),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Dropout2d(p = 0.1),
            nn.AdaptiveMaxPool2d((1,1)),
            nn.Flatten(),
            nn.Linear(64,32),
            nn.ReLU(),
            nn.Linear(32,10)]
        )
    def forward(self,x):
        for layer in self.layers:
            x = layer(x)
        return x
model = torchkeras.Model(CnnModel())
print(model)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
model.summary(input_shape=(1,32,32))
  • 1
from sklearn.metrics import accuracy_score

def accuracy(y_pred,y_true):
    y_pred_cls = torch.argmax(nn.Softmax(dim=1)(y_pred),dim=1).data
    return accuracy_score(y_true.numpy(),y_pred_cls.numpy())

model.compile(loss_func = nn.CrossEntropyLoss(),
             optimizer= torch.optim.Adam(model.parameters(),lr = 0.02),
             metrics_dict={"accuracy":accuracy})
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
dfhistory = model.fit(3,dl_train = dl_train, dl_val=dl_valid, log_step_freq=100) 
  • 1

torchKeras的优点之一是以类风格的形式完成整个模型的训练和测试过程,代码简洁明了,不过在后期的学习过程中,torchKearas可能会存在一定的限制,限制你的某些实现方案。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/432839
推荐阅读
相关标签
  

闽ICP备14008679号