赞
踩
想象“语音识别”这样的场景,机器通过一定的算法将语音转换为文字,显然这个过程是及其容易出错的。例如,用户发音“Recognize Speech”,机器可能会正确地识别文字为“Recognize speech”,但是也可以不小心错误地识别为“Wrench a nice beach"。简单地从词法上进行分析,我们无法得到正确的识别,但是计算机也不懂语法,那么我们应该如果处理这个问题呢?一个简单易行的方法就是用统计学方法(马尔可夫链)从概率上来判断各个识别的正确可能性。
首先,我们定义一个有限的字典V。V = {the, a, man, telescope ... },通过字典间有限或者无限次笛卡儿积,我们可以得到一个无限的字符串组合S,S可能包含:
1,the
2,a
3,the man
4,the man walks
...
其次,假设我们有一个训练数据集,数据集中包含了许多文章。通过统计数据集中出现的句子、其出现次数c(x)以及数据集句子总数N,我们可以计算出每个句子的出现频率。令x ∈ S,p(x) = c(x)/N表示x的出现频率,显然Σp(x) = 1。
综上所述,我们可以发现几个问题:
1)上述的语言模型只是理论上存在的,当训练数据集无限大的时候,数据集中的频率可以无限接近语法中实际的概率
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。