当前位置:   article > 正文

李宏毅机器学习(7)_given network structure, define a function set

given network structure, define a function set

Brief introduction for Deep Learning

深度学习3步骤

  1. 设定神经网络(define a set of function)
  2. 设定Loss函数(goodness of function)
  3. 选出最好的函数(pick the best function)

Network parameter θ θ θ:all the weights and biases in the neurons
在这里插入图片描述
在这里插入图片描述

Given network structure,define a function set(还没定参数)
Deep = = =Many hidden layers

Matrix Operation:
在这里插入图片描述
y = f ( x ) = σ ( w L . . . σ ( w 2 σ ( w 1 ⋅ x + b 1 ) + b 2 ) . . . + b L ) y=f(x)=σ(w_L...σ(w_2 σ(w_1·x+b_1)+b_2)...+b_L) y=f(x)=σ(wL...σ(w2σ(w1x+b1)+b2)...+bL)
将Neural Network 用矩阵乘法表示,所以就可以用GPU优化加速。

How many layers?How many neurons for each layer?

  • Trial and Error + Intuition 经验+直觉

Can the structure be automatically determined?

  • 可以,但技术不成熟,尚未普及

Can we design the network structure?

  • 可以,如:Convolutional Neural Network

Loss for an Example

用 Cross entropy: C ( y , y ^ ) = − ∑ i = 1 10 y ^ i l n y i , L = ∑ n = 1 N C n C(y,\widehat{y})=-\sum_{i=1}^{10}{\widehat{y}_ilny_i},L=\sum_{n=1}^{N}{C_n} C(y,y )=i=110y ilnyi,L=n=1NCn
Find a fucntion is function set that minimize total loss L L L
Find the network parameters θ ∗ θ^{*} θ that minimize total loss L L L
方法:还是Gradient Descent
Backpropagation算法:an efficient way to compute α L α w \frac{αL}{αw} αwαL in neural network
就是使用工具包
Universality Theorem
Any continuous function f
f : R N → R M f:R^N \rightarrow R^M f:RNRM
Can be realized by a network with one hidden layer(given enough hidden neurons)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/537492?site
推荐阅读
相关标签
  

闽ICP备14008679号