赞
踩
分治法在大数据处理中的应用不仅有助于提高处理效率,还可以充分利用分布式计算和存储资源,从而更好地应对大数据量和复杂性。然而,在应用分治法时需要考虑合适的数据分割策略、任务调度、结果合并等问题,以确保分治法的正确性和性能。
然而,分布式计算也带来了一些挑战,如数据一致性、通信开销、任务调度等问题,需要综合考虑各种因素来设计和优化分布式系统。同时,分布式计算也需要开发者具备分布式系统设计和调优的知识和技能,以确保系统的性能和稳定性。
当数据量巨大且单机存储已无法满足需求时,分布式存储和分布式文件系统成为处理大数据的关键技术。下面我会详细介绍分布式存储和分布式文件系统的概念、特点和常见的实现。
分布式存储是将数据分散存储在多个节点上,以提供高容量、高性能、高可靠性和可扩展性的数据存储解决方案。每个节点都可以通过网络访问数据,并且多个节点协同工作来处理数据请求。分布式存储的核心目标是解决单机存储的瓶颈,同时提供高可靠性和可用性。
分布式存储的特点包括:
分布式文件系统是一种特殊类型的分布式存储,主要用于存储和管理文件数据。它提供了类似于传统单机文件系统的接口,但是在底层实现上,数据被分散存储在多个节点上。分布式文件系统能够自动处理数据的分布、复制、一致性和故障恢复等问题。
常见的分布式文件系统特点包括:
常见的分布式文件系统包括:
总之,分布式存储和分布式文件系统在大数据时代扮演着重要角色,帮助我们存储、管理和访问海量的数据,解决了传统单机存储无法应对的挑战。
批处理和流处理是大数据处理领域中常见的两种数据处理模式,用于不同类型的数据处理需求。下面将详细介绍这两种模式,并给出相关的应用场景示例。
批处理是指将一批数据集合在一起,在一个固定的时间间隔内对这批数据进行处理和分析。批处理通常适用于数据量较大、处理周期较长、要求高一致性的场景。
特点:
应用场景示例:
流处理是指在数据生成的时候立即进行处理,实现数据的实时处理和分析。流处理通常适用于数据实时性要求高、需要快速响应的场景。
特点:
应用场景示例:
总之,批处理和流处理分别适用于不同类型的数据处理需求,根据业务需求和实时性要求选择合适的处理模式。
当谈论大数据处理时,Hadoop、YARN、Spark和Flink都是重要的技术。它们都属于大数据领域的分布式计算框架,但在功能和使用方式上有所不同。
Hadoop是一个开源的分布式存储和计算框架,最初由Apache开发,用于处理大规模数据集。Hadoop的核心组件包括:
YARN是Hadoop的资源管理器,它负责集群资源的管理和分配。YARN将集群资源划分为容器(Containers),并分配给不同的应用程序。这种资源的隔离和管理允许多个应用程序同时在同一个Hadoop集群上运行,从而提高了资源利用率和集群的多租户能力。
Apache Spark是一个通用的分布式计算引擎,旨在提供高性能、易用性和多功能性。与传统的Hadoop MapReduce相比,Spark具有更快的执行速度,因为它将数据加载到内存中并进行内存计算。Spark支持多种计算模式,包括批处理、交互式查询、流处理和机器学习。
Spark的主要特点和组件包括:
Apache Flink是一个流式处理引擎和分布式批处理框架,具有低延迟、高吞吐量和容错性。Flink支持流批一体化,能够实现实时流处理和批处理作业的无缝切换。它的核心特点包括:
Flink在流处理上的几个主要优势如下:
总体来说,Flink作为新一代流处理引擎,在延迟、容错、易用性方面优于Spark Streaming。但Spark生态更加完善,也在努力减小与Flink的差距。需要根据具体场景选择最优的框架。
总的来说,Flink在流处理领域的优势主要体现在事件时间处理、低延迟、精确一次语义和状态管理等方面。这些特性使得Flink在处理实时流数据时能够更好地满足复杂的业务需求,特别是对于需要高准确性和可靠性的应用场景。
Apache Flink在1.7版本中进行了重大的架构重构,引入了Master-Worker架构,这使得Flink能够更好地适应不同的集群基础设施,包括Standalone、Hadoop YARN和Kubernetes等。下面会详细介绍一下Flink 1.7版本引入的Master-Worker架构以及其在不同集群基础设施中的适应性。
Flink 1.7版本中引入的Master-Worker架构是为了解决之前版本中存在的一些问题,如资源管理、高可用性等。在这个架构中,Flink将任务管理和资源管理分离,引入了JobManager和ResourceManager两个主要角色。
这种架构的优势在于解耦任务的管理和资源的管理,使得Flink能够更好地适应不同的集群环境和基础设施。
Flink的Master-Worker架构设计使其能够兼容几乎所有主流信息系统的基础设施,包括:
这种兼容性使得Flink可以灵活地在不同的集群环境中运行,满足不同场景下的需求。
总之,Flink在1.7版本中引入的Master-Worker架构使其在资源管理、高可用性等方面有了更好的表现,同时也使得Flink能够更好地适应各种不同的集群基础设施,包括Standalone、Hadoop YARN和Kubernetes等。这为Flink的部署和使用带来了更多的灵活性和选择性。
Standalone集群是Apache Flink中一种简单的部署模式,适用于开发、测试和小规模应用场景。下面我将详细介绍Standalone集群的特点以及部署方式。
apache-flink安装包下载_开源镜像站-阿里云 (aliyun.com)(https://mirrors.aliyun.com/apache/flink/
)
conf/flink-conf.yaml
配置文件。主要配置项包括jobmanager.rpc.address
和taskmanager.numberOfTaskSlots
等。./bin/start-cluster.sh
./bin/taskmanager.sh start
./bin/flink run -c your.main.Class ./path/to/your.jar
./bin/stop-cluster.sh
总之,Standalone集群是一个简单且易于部署的Flink集群模式,适用于开发、测试和小规模应用场景。然而,由于其资源共享和不支持高可用性的特点,不适合部署在生产环境中。
下面提供利用Docker部署flink standalone简单集群。
Flink程序可以作为集群内的分布式系统运行,也可以以独立模式或在YARN、Mesos、基于Docker的环境和其他资源管理框架下进行部署。
mkdir flink
目录的结构如下:
docker 容器的编排文件,具体如下
(1)后台运行
一般推荐生产环境下使用该选项。
docker-compose up -d
(2)前台运行
控制台将会同时打印所有容器的输出信息,可以很方便进行调试。
docker-compose up
访问web界面
http://cdh1:8081/
通过一个单词统计的案例,快速上手应用Flink,进行流处理(Streaming)和批处理(Batch)
统计一个文件中各个单词出现的次数,把统计结果输出到文件
步骤:1、读取数据源 2、处理数据源
a、将读到的数据源文件中的每一行根据空格切分
b、将切分好的每个单词拼接1
c、根据单词聚合(将相同的单词放在一起)
d、累加相同的单词(单词后面的1进行累加)
3、保存处理结果
<!--flink核心包-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.7.2</version>
</dependency>
<!--flink流处理包-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.12</artifactId>
<version>1.7.2</version>
<scope>provided</scope>
</dependency>
package com.crazymaker.bigdata.wordcount.batch; import org.apache.flink.api.common.functions.FlatMapFunction; import org.apache.flink.api.java.DataSet; import org.apache.flink.api.java.ExecutionEnvironment; import org.apache.flink.api.java.operators.AggregateOperator; import org.apache.flink.api.java.operators.FlatMapOperator; import org.apache.flink.api.java.operators.UnsortedGrouping; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.util.Collector; /** * 1、读取数据源 * 2、处理数据源 * a、将读到的数据源文件中的每一行根据空格切分 * b、将切分好的每个单词拼接1 * c、根据单词聚合(将相同的单词放在一起) * d、累加相同的单词(单词后面的1进行累加) * 3、保存处理结果 */ public class WordCountJavaBatch { public static void main(String[] args) throws Exception { String inputPath="D:\\data\\input\\hello.txt"; String outputPath="D:\\data\\output\\hello.txt"; //获取flink的运行环境 ExecutionEnvironment executionEnvironment = ExecutionEnvironment.getExecutionEnvironment(); DataSet<String> text = executionEnvironment.readTextFile(inputPath); FlatMapOperator<String, Tuple2<String, Integer>> wordOndOnes = text.flatMap(new SplitClz()); //0代表第1个元素 UnsortedGrouping<Tuple2<String, Integer>> groupedWordAndOne = wordOndOnes.groupBy(0); //1代表第1个元素 AggregateOperator<Tuple2<String, Integer>> out = groupedWordAndOne.sum(1); out.writeAsCsv(outputPath, "\n", " ").setParallelism(1);//设置并行度 executionEnvironment.execute();//人为调用执行方法 } static class SplitClz implements FlatMapFunction<String,Tuple2<String,Integer>>{ public void flatMap(String s, Collector<Tuple2<String, Integer>> collector) throws Exception { String[] s1 = s.split(" "); for (String word:s1) { collector.collect(new Tuple2<String,Integer>(word,1));//发送到下游 } } } }
源文件的内容
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
String,Integer>(word,1));//发送到下游
}
}
}
}
源文件的内容 ![](https://img-blog.csdnimg.cn/direct/dfd1aa3d24dc4d2b81e16f1a37a12611.png) [外链图片转存中...(img-78xIT9Zn-1714230263165)] [外链图片转存中...(img-NObikc0Q-1714230263166)] **网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。** **[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)** **一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。