当前位置:   article > 正文

【数据结构初阶】二叉树——堆的应用(堆排序 + TOP-K问题)

【数据结构初阶】二叉树——堆的应用(堆排序 + TOP-K问题)


上一篇我们讲了二叉树的概念,以及堆的结构和实现。不了解的 点击此处进行了解。

本篇,博主分享的是堆的应用

一、堆排序

概念:

堆排序,即利用堆的特性设计的一种排序算法。堆排序通过建大堆或者建小堆来进行排序的算法

举例:
假如有一个数组a = { 65, 100, 60, 32, 50, 70 } ,从逻辑上我们可以把它看作一个完全二叉树,但不一定是堆,所以我们需要先将数组建成堆,建大堆(或者建小堆)我们就可以再堆顶上选出最大(或最小)的数据,通过不断的选数,我们就可以按照升序或降序将数据排好了。

如何建堆:
再上一篇我们讲过有两种建堆的方式,如下:

1. 向上调整建堆
时间复杂度为O(N*logN)
向上调整建堆:从第二个结点开始向上调整,依次往后。与堆的插入类似。请添加图片描述
代码实现如下:

void HeapCreate(HPDataType* a, int size)
{
	assert(a);
	for (int i = 1; i < size; ++i)//从第二个结点开始遍历
	{
		//向上调整建大堆
		AdjustUp(a, i);
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

2. 向下调整建堆
时间复杂度为O(N)

向下调整建堆,从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。
请添加图片描述
代码实现

void HeapCreate(HPDataType* a, int size)
{
	assert(a);
	for (int i = (size - 1 - 1) / 2; i >= 0; --i)//从最后一个叶结点的父结点开始到根结点
	{
		//向下调整建大堆
		AdjustDown(a,size, i);
	}
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

当我们将堆建立好之后,接下来,我们要将对已经建好的堆进行排序。这里我们可能就会有个疑惑了?

排升序 – 建大堆还是小堆?
排降序 – 建大堆还是小堆?

可能会有人认为,排升序应该建立小堆,因为小堆的堆顶就是最小的数据,不断的取堆顶元素就可以形成升序。可是如果这样的话,当我们取出堆顶最小的数据后,若想选出次小的数,就要删除首元素,那么剩下的数据就构成不了小堆了,那我们就需要从第二个数据开始又重新建堆,这样一来时间复杂度就成为了O(N^2),这显然是不可取的,效率太低,那么堆排序也就失去它存在的意义。

所以我们如果排升序的话,应该建立大堆
同样的道理,反过来,如果排降序,那我们就应该建小堆

排序操作步骤: - - 采用堆的删除思想

  1. 建大堆,选出最大的数
  2. 首尾元素互换,将最大的数被移到末尾
  3. 然后把最后一个元素不看做堆里面的数据,接着从根节点开始向下调整,选出次大的数移至首位。
  4. 再次将首位元素互换,进行上述一样的操作,直到将数组调整完毕。

代码实现:

void HeapSort(int* a, int n)
{

	// 升序 -- 大堆
	// 降序 -- 小堆
	// 建堆 -- 向下调整建堆 - O(N)
	for (int i = (n - 1 - 1) / 2; i >= 0; --i)//(n - 1 - 1) / 2 -- (n-1)是最后一个叶子节点,再减一除2就是求最后一个节点的父节点
	{
		AdjustDown(a, n, i);
	}

	// 选数
	int i = 1;
	while (i < n)
	{
		Swap(&a[0], &a[n - i]);
		AdjustDown(a, n - i, 0);
		++i;
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

在这里插入图片描述

时间复杂度分析:

建堆:时间复杂度为O(N)
n次向下调整:向下调整一次是O(logN), n次就是O(NlogN)
总的时间为:N
logN + N ≈ N*logN

所以堆排序的时间复杂度为O(N*logN)

二、TOP-K问题

TOP-K问题: 再N个数里找出前K个最值

我们用求前K大数举例。

方法一:
将N个数建立成大堆,然后删除并取K次堆顶数据,这样就可以得到前K个最值
时间复杂度 为O(N+k*logN)
但当数据量很大时,这个方法效率就有点低了,不太适合。

方法二:

  1. 用前K个数建立一个K个元素的堆。
    • 若求前K大的值,建小堆
    • 若求前K小的值,建大堆
  2. 剩下的N-K个数,依次和堆顶元素进行比较,若比堆顶元素大则替换堆顶元素,然后向下调整
  3. 遍历完数组后,堆里的值就是前K个最大的值

建立K个数的小堆,保持小的在上面,大的在下面,每次都会把其中最小的删除出堆,而比堆顶元素大的进堆向下调整后,大的就移至下面。

void PrintTopK(int* a, int n, int k)
{
	assert(a);
	HP hp;
	HeapInit(&hp);
	//创建一个k个数的小堆
	for (int i = 0; i < k; ++i)
	{
		HeapPush(&hp, a[i]);
	}
	//剩下的N-K个数根堆顶的数据比较,比它大,就替换它
	for (int i = k; i < n; ++i)
	{
		if (a[i] > HeapTop(&hp))
		{
			HeapPop(&hp);
			HeapPush(&hp, a[i]);
			//hp.a[0] = a[i];
			//AdjustDown(hp.a, hp.size, 0);
		}
	}
	HeapPrint(&hp);
	HeapDestroy(&hp);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

验证:
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/615226
推荐阅读
相关标签
  

闽ICP备14008679号