当前位置:   article > 正文

使用决策树模型Titanic数据集预测_决策树数据集

决策树数据集

数据准备

可以通过以下链接获取数据集:

百度网盘 请输入提取码

共包含三个csv文件:

《train.csv》训练数据集,包含特征信息和标签(是否幸存)

《test.csv》 测试数据集, 只包含特征信息

《gender_submission.csv》测试数据集的标签(是否幸存)

数据集各列含义如下:

  • PassengerId :ID
  • Pclass :舱位等级(分为1/2/3等)
  • Name : 姓名
  • Sex : 性别
  • Age : 年龄
  • SibSp : 堂兄弟/妹个数
  • Parch : 父母/小孩个数
  • Ticket : 船票信息
  • Fare :票价
  • Cabin : 客舱位置
  • Embarked : 登船港口

实验思路

数据处理——特征选择——模型构建——预测分析——可视化

1、导入数据集

import pandas as pd

# 首先导入数据
train = pd.read_csv("train.csv")
test_x = pd.read_csv("test.csv")
test_y = pd.read_csv("gender_submission.csv")

print(train.info()) # 打印数据,查看是否有缺失值

我们需要使用train来训练模型,使用test_x和test_y来测试模型的效果

然后可以通过info方法来查看数据结构信息:

可以看到,一共有891条数据,其中属性Age、Cabin、Embarked是有空白值的,因此我们需要对这些空白值进行处理;

2、缺省值处理

在进行缺省值处理的时候,我们首先需要确定要用哪些特征来构建决策树

通过直观感受可以判断,生存概率应该与年龄、性别、船舱位置有关

其余的特征好像无法与生存概率有较为直观的联系

接下来,通过上面数据结构的分析,年龄和船舱位置都有部分空白值,尤其是船舱位置,有着大面积的空白

所以我们需要想办法对这些缺省值进行处理(删除/填充)

通过上图对于Cabin这一列数据的分析,可以看到,Cabin的值没有分布规律,且信息缺失尤其严重,不易处理,因此我们选择放弃这一属性;而对于Age属性,可以选择使用中位数或者平均数进行填充:

# 填充缺失值
# Cabin信息缺失太严重,不作为特征,因此不填充
# Age需要作为特征值,采用平均值进行填充
train.Age.fillna(train.Age.mean(),inplace=True)
test_x.Age.fillna(test_x.Age.mean(),inplace=True)

# 使用mean()方法计算均值;如需使用中位数,可以使用median()方法

数据填充使用fillna()方法,具体用法:fillna(填充值,inplace=True)

其中inplace=True表示直接修改原始数据框,如果为False则不修改原始数据框,而是返回一个新的数据框;

对于fillna函数,还有以下多种用法,这里不再赘述:

3、特征选取

根据上面的分析,我们最终选取了Age和Sex作为特征;

但是Sex的值是分类变量,无法使用决策树进行处理,所以需要先转化为数字标签

具体的转化使用LabelEncoder()方法

LabelEncoder是sklearn中一种用于将分类变量转换为数字标签的工具。它可以将一个类别字符串(如“狗”、“猫”、“鸟”等)映射到一个整数标签(如0、1、2等),从而方便地进行数据处理和分析

from sklearn.preprocessing import LabelEncoder

# 选取特征
# 选用 Sex Age 作为特征
# 将Sex进行编码处理:使用LabelEncoder将分类变量映射为数字标签
le=LabelEncoder()
train['Sex']=le.fit_transform(train['Sex']) # 男性为1 女性为0
test_x['Sex'] = le.fit_transform(test_x['Sex'])

具体使用的是fit_transform()方法;该方法时fit()方法和transform()方法的组合,首先使用 fit() 方法将 LabelEncode 对象拟合到输入数据集中,得到一个转换矩阵。然后,使用 transform() 方法将该转换矩阵应用于输入数据集,得到转换后的结果

4、构建决策树

from sklearn.tree import DecisionTreeClassifier

# 构建决策树
features = ['Sex','Age']
x_train = train[features]
y_train = train['Survived']
x_test = test_x[features]
y_test = test_y['Survived']

clf = DecisionTreeClassifier(criterion='entropy',splitter='best')

使用DecisionTreeClassifier来构建决策树

相关参数设置可以参考官网:

sklearn.tree.DecisionTreeClassifier — scikit-learn 1.2.2 documentation

我在这里仅设置了criterion和splitter:

  • criterion(分类器准测){“gini”, “entropy”, “log_loss”}, default=”gini”

这里选择entropy,通过计算信息增益来选取优先用于分类的属性;具体来说

  • splitter{“best”, “random”}, default=”best”

用于在每个节点上选择分割的策略,这里选用best,在特征的所有划分点中找出最优的划分点

5、模型训练

clf.fit(x_train,y_train) # 训练模型

clf.predict(x_test)

score = clf.score(x_test,y_test)
print(score)

最终的结果是

可以看到模型的准确率达到了86%左右

6、可视化

from sklearn.tree import export_graphviz

with open('Titanic.dot','w')as f:
    f=export_graphviz(clf,feature_names=['Sex','Age'],out_file=f)

将生成的决策树保存为.dot类型的文件

我们可以下载专门的graphviz软件来生成图片,下载链接如下:

Download | Graphviz

或者直接从百度网盘获取也可:

百度网盘 请输入提取码

最终生成的图片如下:

实验源码

最后将完整代码总结如下:

import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier,export_graphviz

# 打印完整的train数据
def display_options():
    display = pd.options.display
    display.max_columns = 12
    display.max_rows = 5
    display.width = 1000
display_options()

# 首先导入数据
train = pd.read_csv("train.csv")
test_x = pd.read_csv("test.csv")
test_y = pd.read_csv("gender_submission.csv")
print(train.info()) # 打印数据,查看是否有缺失值

# 填充缺失值
# Cabin信息缺失太严重,不作为特征,因此不填充
# Age需要作为特征值,采用平均值进行填充
train.Age.fillna(train.Age.mean(),inplace=True)
test_x.Age.fillna(test_x.Age.mean(),inplace=True)

# 选取特征
# 选用 Sex Age 作为特征
# 将Sex进行编码处理:使用LabelEncoder将分类变量映射为数字标签
le=LabelEncoder()
train['Sex']=le.fit_transform(train['Sex']) # 男性为1 女性为0
test_x['Sex'] = le.fit_transform(test_x['Sex'])


# 构建决策树
features = ['Sex','Age']
x_train = train[features]
y_train = train['Survived']
x_test = test_x[features]
y_test = test_y['Survived']

clf = DecisionTreeClassifier(criterion='entropy',splitter='best')
clf.fit(x_train,y_train) # 训练模型

clf.predict(x_test)

score = clf.score(x_test,y_test)
print(score)

# # 决策树可视化
with open('Titanic.dot','w')as f:
    f=export_graphviz(clf,feature_names=['Sex','Age'],out_file=f)
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/643556
推荐阅读
相关标签
  

闽ICP备14008679号