赞
踩
main.cpp
程序内容如下:
/* main.cpp - Main loop for Arduino sketches Copyright (c) 2005-2013 Arduino Team. All right reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include <Arduino.h> // Declared weak in Arduino.h to allow user redefinitions. int atexit(void (* /*func*/ )()) { return 0; } // Weak empty variant initialization function. // May be redefined by variant files. void initVariant() __attribute__((weak)); void initVariant() { } void setupUSB() __attribute__((weak)); void setupUSB() { } int main(void) { init(); initVariant(); #if defined(USBCON) USBDevice.attach(); #endif setup(); for (;;) { loop(); if (serialEventRun) serialEventRun(); } return 0; }
Arduino 多文件管理可以解决程序较大的问题。
Arduino 程序可以有多个源代码文件,但只有 1 个主文件,即存在 setup,loop 函数的 .ino 文件。
为了方便演示,我们让主文件来控制程序的主逻辑,具体的细节则封装成单个模块,存放在其他文件中。
下面介绍如何创建其他的单个模块的文件。
这种方式对于一个代码模块,我们需要两个文件,源文件(.c / .cpp)和头文件(.h)。
如果是 .c 和 .h 的组合方式,则是 C 语言风格。
如果是 .cpp 和 .h 的组合方式,则是 C++ 风格。
官方推荐 C++,因此我们学习并使用 C++ 风格来举例。
封装之前我们先创建文件结构,包含两个文件:LED.h 和 LED.cpp
之后我们需要明确我们的控制功能。规定功能后,先写出头文件(LED.h),然后写出实现(LED.cpp),最有在主文件(LED.ino)中使用这个模块即可。
/******************* LED.h *******************/ #ifndef _LED_H__ #define _LED_H__ //导入Arduino核心头文件 #include"Arduino.h" class LED { private: byte pin; //控制led使用的引脚 public: LED(byte p , bool state=LOW ); //构造函数 ~LED(); //析构函数 byte getPin(); //获取控制的引脚 void on(); //打开LED void off(); //关闭LED bool getState(); //获取LED状态 void disattach(); //释放引脚与LED的绑定,使得引脚可以控制其他的东西 }; #endif
/***************** LED.cpp ******************/ #include"LED.h" #include"Arduino.h" LED::LED(byte p,bool state):pin(p) { pinMode(pin,OUTPUT); digitalWrite(pin,state); } LED::~LED() { disattach(); } void LED::on() { digitalWrite(pin,HIGH); } void LED::off() { digitalWrite(pin,LOW); } bool LED::getState() { return digitalRead(pin); } void LED::disattach() //引脚回收,恢复到上电状态 { digitalWrite(pin,LOW); pinMode(pin,INPUT); }
/**********************实例化1个LED对象,用7号叫控制,让他闪烁10次,并在串口打印出它的状态。10次完毕后释放回收引脚**********************/ #include"LED.h" LED led(7); byte count =0; void setup() { Serial.begin(9600); } void loop() { if(count<10) { led.on(); delay(300); Serial.print("LED state:");Serial.println(led.getState(),DEC); led.off(); delay(300); Serial.print("LED state:");Serial.println(led.getState(),DEC); ++count; if(count==10) led.disattach(); } }
附
/* Arduino.h - Main include file for the Arduino SDK Copyright (c) 2005-2013 Arduino Team. All right reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef Arduino_h #define Arduino_h #include <stdlib.h> #include <stdbool.h> #include <string.h> #include <math.h> #include <avr/pgmspace.h> #include <avr/io.h> #include <avr/interrupt.h> #include "binary.h" #ifdef __cplusplus extern "C"{ #endif void yield(void); #define HIGH 0x1 #define LOW 0x0 #define INPUT 0x0 #define OUTPUT 0x1 #define INPUT_PULLUP 0x2 #define PI 3.1415926535897932384626433832795 #define HALF_PI 1.5707963267948966192313216916398 #define TWO_PI 6.283185307179586476925286766559 #define DEG_TO_RAD 0.017453292519943295769236907684886 #define RAD_TO_DEG 57.295779513082320876798154814105 #define EULER 2.718281828459045235360287471352 #define SERIAL 0x0 #define DISPLAY 0x1 #define LSBFIRST 0 #define MSBFIRST 1 #define CHANGE 1 #define FALLING 2 #define RISING 3 #if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__) #define DEFAULT 0 #define EXTERNAL 1 #define INTERNAL1V1 2 #define INTERNAL INTERNAL1V1 #elif defined(__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__) #define DEFAULT 0 #define EXTERNAL 4 #define INTERNAL1V1 8 #define INTERNAL INTERNAL1V1 #define INTERNAL2V56 9 #define INTERNAL2V56_EXTCAP 13 #else #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644__) || defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__) #define INTERNAL1V1 2 #define INTERNAL2V56 3 #else #define INTERNAL 3 #endif #define DEFAULT 1 #define EXTERNAL 0 #endif // undefine stdlib's abs if encountered #ifdef abs #undef abs #endif #define min(a,b) ((a)<(b)?(a):(b)) #define max(a,b) ((a)>(b)?(a):(b)) #define abs(x) ((x)>0?(x):-(x)) #define constrain(amt,low,high) ((amt)<(low)?(low):((amt)>(high)?(high):(amt))) #define round(x) ((x)>=0?(long)((x)+0.5):(long)((x)-0.5)) #define radians(deg) ((deg)*DEG_TO_RAD) #define degrees(rad) ((rad)*RAD_TO_DEG) #define sq(x) ((x)*(x)) #define interrupts() sei() #define noInterrupts() cli() #define clockCyclesPerMicrosecond() ( F_CPU / 1000000L ) #define clockCyclesToMicroseconds(a) ( (a) / clockCyclesPerMicrosecond() ) #define microsecondsToClockCycles(a) ( (a) * clockCyclesPerMicrosecond() ) #define lowByte(w) ((uint8_t) ((w) & 0xff)) #define highByte(w) ((uint8_t) ((w) >> 8)) #define bitRead(value, bit) (((value) >> (bit)) & 0x01) #define bitSet(value, bit) ((value) |= (1UL << (bit))) #define bitClear(value, bit) ((value) &= ~(1UL << (bit))) #define bitToggle(value, bit) ((value) ^= (1UL << (bit))) #define bitWrite(value, bit, bitvalue) ((bitvalue) ? bitSet(value, bit) : bitClear(value, bit)) // avr-libc defines _NOP() since 1.6.2 #ifndef _NOP #define _NOP() do { __asm__ volatile ("nop"); } while (0) #endif typedef unsigned int word; #define bit(b) (1UL << (b)) typedef bool boolean; typedef uint8_t byte; void init(void); void initVariant(void); int atexit(void (*func)()) __attribute__((weak)); void pinMode(uint8_t pin, uint8_t mode); void digitalWrite(uint8_t pin, uint8_t val); int digitalRead(uint8_t pin); int analogRead(uint8_t pin); void analogReference(uint8_t mode); void analogWrite(uint8_t pin, int val); unsigned long millis(void); unsigned long micros(void); void delay(unsigned long ms); void delayMicroseconds(unsigned int us); unsigned long pulseIn(uint8_t pin, uint8_t state, unsigned long timeout); unsigned long pulseInLong(uint8_t pin, uint8_t state, unsigned long timeout); void shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t val); uint8_t shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder); void attachInterrupt(uint8_t interruptNum, void (*userFunc)(void), int mode); void detachInterrupt(uint8_t interruptNum); void setup(void); void loop(void); // Get the bit location within the hardware port of the given virtual pin. // This comes from the pins_*.c file for the active board configuration. #define analogInPinToBit(P) (P) // On the ATmega1280, the addresses of some of the port registers are // greater than 255, so we can't store them in uint8_t's. extern const uint16_t PROGMEM port_to_mode_PGM[]; extern const uint16_t PROGMEM port_to_input_PGM[]; extern const uint16_t PROGMEM port_to_output_PGM[]; extern const uint8_t PROGMEM digital_pin_to_port_PGM[]; // extern const uint8_t PROGMEM digital_pin_to_bit_PGM[]; extern const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[]; extern const uint8_t PROGMEM digital_pin_to_timer_PGM[]; // Get the bit location within the hardware port of the given virtual pin. // This comes from the pins_*.c file for the active board configuration. // // These perform slightly better as macros compared to inline functions // #define digitalPinToPort(P) ( pgm_read_byte( digital_pin_to_port_PGM + (P) ) ) #define digitalPinToBitMask(P) ( pgm_read_byte( digital_pin_to_bit_mask_PGM + (P) ) ) #define digitalPinToTimer(P) ( pgm_read_byte( digital_pin_to_timer_PGM + (P) ) ) #define analogInPinToBit(P) (P) #define portOutputRegister(P) ( (volatile uint8_t *)( pgm_read_word( port_to_output_PGM + (P))) ) #define portInputRegister(P) ( (volatile uint8_t *)( pgm_read_word( port_to_input_PGM + (P))) ) #define portModeRegister(P) ( (volatile uint8_t *)( pgm_read_word( port_to_mode_PGM + (P))) ) #define NOT_A_PIN 0 #define NOT_A_PORT 0 #define NOT_AN_INTERRUPT -1 #ifdef ARDUINO_MAIN #define PA 1 #define PB 2 #define PC 3 #define PD 4 #define PE 5 #define PF 6 #define PG 7 #define PH 8 #define PJ 10 #define PK 11 #define PL 12 #endif #define NOT_ON_TIMER 0 #define TIMER0A 1 #define TIMER0B 2 #define TIMER1A 3 #define TIMER1B 4 #define TIMER1C 5 #define TIMER2 6 #define TIMER2A 7 #define TIMER2B 8 #define TIMER3A 9 #define TIMER3B 10 #define TIMER3C 11 #define TIMER4A 12 #define TIMER4B 13 #define TIMER4C 14 #define TIMER4D 15 #define TIMER5A 16 #define TIMER5B 17 #define TIMER5C 18 #ifdef __cplusplus } // extern "C" #endif #ifdef __cplusplus #include "WCharacter.h" #include "WString.h" #include "HardwareSerial.h" #include "USBAPI.h" #if defined(HAVE_HWSERIAL0) && defined(HAVE_CDCSERIAL) #error "Targets with both UART0 and CDC serial not supported" #endif uint16_t makeWord(uint16_t w); uint16_t makeWord(byte h, byte l); #define word(...) makeWord(__VA_ARGS__) unsigned long pulseIn(uint8_t pin, uint8_t state, unsigned long timeout = 1000000L); unsigned long pulseInLong(uint8_t pin, uint8_t state, unsigned long timeout = 1000000L); void tone(uint8_t _pin, unsigned int frequency, unsigned long duration = 0); void noTone(uint8_t _pin); // WMath prototypes long random(long); long random(long, long); void randomSeed(unsigned long); long map(long, long, long, long, long); #endif #include "pins_arduino.h" #endif
类的构造函数是类的一种特殊的成员函数,它会在每次创建类的新对象时执行。
构造函数的名称与类的名称是完全相同的
,并且不会返回任何类型,也不会返回 void。构造函数可用于为某些成员变量设置初始值。
类的析构函数是类的一种特殊的成员函数,它会在每次删除所创建的对象时执行。
析构函数的名称与类的名称是完全相同的,只是在前面加了个波浪号(~
)作为前缀,它不会返回任何值,也不能带有任何参数。析构函数有助于在跳出程序(比如关闭文件、释放内存等)前释放资源。
/******************* UGV.h *******************/ #ifndef _UGV_H__ #define _UGV_H__ //导入Arduino核心头文件 #include"Arduino.h" class UGV { private: byte LF; //控制led使用的引脚 byte LB; //控制led使用的引脚 byte RF; //控制led使用的引脚 byte RB; //控制led使用的引脚 public: UGV(byte IN1, byte IN2, byte IN3, byte IN4); //构造函数 ~UGV(); //析构函数 void forward(byte LSp, byte Rsp); void backward(byte LSp, byte Rsp); void turnright(byte LSp, byte Rsp); void turnleft(byte LSp, byte Rsp); void parking(); }; #endif
/***************** UGV.cpp ******************/ #include"UGV.h" #include"Arduino.h" UGV::UGV(byte IN1, byte IN2, byte IN3, byte IN4):LF(IN1), LB(IN2), RF(IN4), RB(IN3) { pinMode(LF,OUTPUT); pinMode(LB,OUTPUT); pinMode(RF,OUTPUT); pinMode(RB,OUTPUT); } UGV::~UGV() { // disattach(); } void UGV::forward(byte LSp, byte RSp) { analogWrite(LF, LSp); analogWrite(LB, 0); analogWrite(RF, RSp); analogWrite(RB, 0); } void UGV::backward(byte LSp, byte RSp) { analogWrite(LF, 0); analogWrite(LB, LSp); analogWrite(RF, 0); analogWrite(RB, RSp); } void UGV::turnleft(byte LSp, byte RSp) { analogWrite(LF, LSp); analogWrite(LB, 0); analogWrite(RF, 0); analogWrite(RB, RSp); } void UGV::turnright(byte LSp, byte RSp) { analogWrite(LF, 0); analogWrite(LB, LSp); analogWrite(RF, RSp); analogWrite(RB, 0); } void UGV::parking() { analogWrite(LF,0); analogWrite(LB, 0); analogWrite(RF,0); analogWrite(RB, 0); }
#include"UGV.h" // 自己编写的库文件,记得导入 Arduino 安装目录 UGV UGV(6, 9, 10, 11); void setup() { delay( 1000 ); // power-up safety delay } void loop() { UGV.forward(255, 255); delay(1000); UGV.parking(); delay(1000); UGV.backward(255, 255); delay(1000); UGV.parking(); delay(1000); UGV.turnleft(255, 255); delay(1000); UGV.parking(); delay(1000); UGV.turnright(100, 100); delay(1000); UGV.parking(); delay(1000); }
Ref:
[1] 如何编写自己的Arduino库?
[2] 【C++】C++中的分离式编译
[3] C++ 类构造函数 & 析构函数
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。