当前位置:   article > 正文

【论文阅读笔记】mask r-cnn代码和论文结合阅读_cannotimportnamecnnfrom

cannotimportnamecnnfrom

代码运行

代码:https://github.com/facebookresearch/maskrcnn-benchmark

配置环境

首先按照官方文档配置环境
https://github.com/facebookresearch/maskrcnn-benchmark/blob/0ce8f6f64b5c462dc2e8cad14620a188f98b4411/INSTALL.md
就按照步骤一步一步来,要注意安pytorch的时候自己去官网选:https://pytorch.org/get-started/locally/ 不要直接复制人家的

数据集

我首先想把train跑通,所以我们要看的是github的Perform training on COCO dataset的步骤
在这里插入图片描述
这一部分就是在maskrcnn-benchmark 下创一个目录datasets/coco

mkdir -p datasets/coco
  • 1

然后把你coco数据集在的地方移到你新创建的这个文件夹下
我的coco2017数据集在/home/coco2017 下所以我的操作是

ln -s /home/coco2017/annotations datasets/coco/annotations
ln -s /home/coco2017/train2017 datasets/coco/train2017
ln -s /home/coco2017/test2017 datasets/coco/test2017
ln -s /home/coco2017/val2017 datasets/coco/val2017
  • 1
  • 2
  • 3
  • 4

然后他代码里默认用的是coco2014,如果你的数据集是2017的话,你要去yaml文件中改一下
比如说我用的是faster_rcnn_R_101_FPN_1x.yaml,我就找到这个文件然后把14改成17,
/home/zxf/maskrcnn-benchmark/configs/e2e_faster_rcnn_R_101_FPN_1x.yaml
作者也在原文说了
P.S. COCO_2017_train = COCO_2014_train + valminusminival , COCO_2017_val = minival
所以我们要改的方式如下:
在这里插入图片描述

跑train_net.py

以下命令是专门为单GPU设计的

python tools/train_net.py --config-file "configs/e2e_mask_rcnn_R_50_FPN_1x.yaml" SOLVER.IMS_PER_BATCH 2 SOLVER.BASE_LR 0.0025 SOLVER.MAX_ITER 720000 SOLVER.STEPS "(480000, 640000)" TEST.IMS_PER_BATCH 1 MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN 2000
  • 1

你看你要用哪种网络训练,这个yaml文件在maskrcnn-benchmark/configs/下
在这里插入图片描述

出现问题及解决方法

我下面出现的这些问题是我当初没有按官方文档配置,才出现了各种各样的奇怪的问题,后来按照官方的重新配一遍环境后,就几乎没有什么问题了。所以如果你没有配,建议先去配一下。
当然跑是不可能这么容易跑通的,下面就记录一下我出现的问题及解决方法

  1. ModuleNotFoundError: No module named ‘maskrcnn_benchmark’
    在这里插入图片描述
    这个问题就是tools和maskrcnn_benchmark在同级目录下,所以它找不到,在train_net.py最上面指定一下目录就好了
import sys
sys.path.append('/home/zxf/maskrcnn-benchmark')
  • 1
  • 2

在这里插入图片描述
2. ImportError: cannot import name ‘_C’ from ‘maskrcnn_benchmark’ (/home/zxf/maskrcnn-benchmark/maskrcnn_benchmark/init.py)

在这里插入图片描述
这个我们找到
maskrcnn_benchmark/layers
5在这里插入图片描述
①对于layers下面的文件,nms.py、roi_align.py等出现这个错误的from maskrcnn_benchmark import _C都换成from ._utils import _C就解决了
②对于dcn
因为_utils和dcn同级,所以我们要做如下的操作

import sys
sys.path.append('/home/zxf/maskrcnn-benchmark/maskrcnn_benchmark/layers')
from _utils import _C
  • 1
  • 2
  • 3

在这里插入图片描述
3. TypeError: Class advice impossible in Python3. Use the @Implementer class decorator instead.

pip uninstall apex
git clone https://www.github.com/nvidia/apex
cd apex
python setup.py install
  • 1
  • 2
  • 3
  • 4
  1. IndexError: list index out of range
    在这里插入图片描述

修改/home/zxf/maskrcnn-benchmark/maskrcnn_benchmark/data/datasets/coco.py
coco.py的
在这里插入图片描述
也就是把上面三行注释掉,换成:

masks = [obj["segmentation"] for obj in anno if any(obj["segmentation"])]

代码阅读

tools/train_net.py

通过main函数

model = train(cfg, args.local_rank, args.distributed)
  • 1

得到的模型如下:

GeneralizedRCNN(
  (backbone): Sequential(
    (body): ResNet(
      (stem): StemWithFixedBatchNorm(
        (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
        (bn1): FrozenBatchNorm2d()
      )
      (layer1): Sequential(
        (0): BottleneckWithFixedBatchNorm(
          (downsample): Sequential(
            (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (1): FrozenBatchNorm2d()
          )
          (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (1): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (2): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
      )
      (layer2): Sequential(
        (0): BottleneckWithFixedBatchNorm(
          (downsample): Sequential(
            (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
            (1): FrozenBatchNorm2d()
          )
          (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (1): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (2): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (3): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
      )
      (layer3): Sequential(
        (0): BottleneckWithFixedBatchNorm(
          (downsample): Sequential(
            (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
            (1): FrozenBatchNorm2d()
          )
          (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (1): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (2): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (3): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (4): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
        (5): BottleneckWithFixedBatchNorm(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): FrozenBatchNorm2d()
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): FrozenBatchNorm2d()
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): FrozenBatchNorm2d()
        )
      )
      (layer4): Sequential(
        (0): BottleneckWithFixedBatchNorm(
          (downsample): Sequential(
            (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
            (1): FrozenBatchNorm2d()
          )
          (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (bn1): FrozenBatchNorm2d()
          (
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/700038
推荐阅读
相关标签
  

闽ICP备14008679号