赞
踩
NLP之TEA:基于python编程(jieba库)实现中文文本情感分析(得到的是情感评分)
目录
1、测试对象
data1= '今天上海的天气真好!我的心情非常高兴!如果去旅游的话我会非常兴奋!和你一起去旅游我会更加幸福!'
data2= '今天上海天气真差,非常讨厌下雨,把我冻坏了,心情太不高兴了,不高兴,我真的很生气!'
data3= '美国华裔科学家,祖籍江苏扬州市高邮县,生于上海,斯坦福大学物理系,电子工程系和应用物理系终身教授!'
2、输出结果
很明显,data1情感更加积极!data2情感消极!data3情感中等!
[[240.0, 104.0, 8.3, 3.6, 8.0, 2.4]]
[[0.0, 134.0, 0.0, 4.8, 0.0, 3.2]]
[[2, 66, 0.1, 3.3, 0.4, 1.7]]
[[2, 2, 0.1, 0.1, 0.4, 0.4]]
后期更新……
NLP之情感分析:基于python编程(jieba库)实现中文文本情感分析(得到的是情感评分)之全部代码
如需数据集,请留言向博主索取。
注:当前为学生身份的网友,可留言向博主索取。非学生身份的社会人士,请靠积分下载!
比如留言:“20200307,早上10.11,你好,博主,我的邮箱是,我想索取……”
即在本博客下直接留言即可!
在我的论坛中发帖即可,我会及时回复。
地址:https://bbs.csdn.net/topics/395531480
此类网友,太伤人心,这位网友,一定不是大学生,当代大学生的素质肯定比这位网友高的多。
- import jieba
- import numpy as np
-
- ……
-
-
- def sentiment_score_list(dataset):
- seg_sentence = dataset.split('。')
-
- count1 = []
- count2 = []
- for sen in seg_sentence: #循环遍历每一个评论
- segtmp = jieba.lcut(sen, cut_all=False) #把句子进行分词,以列表的形式返回
- i = 0 #记录扫描到的词的位置
- a = 0 #记录情感词的位置
- poscount = 0 #积极词的第一次分值
- poscount2 = 0 #积极词反转后的分值
- poscount3 = 0 #积极词的最后分值(包括叹号的分值)
- negcount = 0
- negcount2 = 0
- negcount3 = 0
- for word in segtmp:
- if word in posdict: # 判断词语是否是情感词
- poscount += 1
- c = 0
- for w in segtmp[a:i]: # 扫描情感词前的程度词
- if w in mostdict:
- poscount *= 4.0
- elif w in verydict:
- poscount *= 3.0
- elif w in moredict:
- poscount *= 2.0
- elif w in ishdict:
- poscount *= 0.5
- elif w in deny_word:
- c += 1
- if judgeodd(c) == 'odd': # 扫描情感词前的否定词数
- poscount *= -1.0
- poscount2 += poscount
- poscount = 0
- poscount3 = poscount + poscount2 + poscount3
- poscount2 = 0
- else:
- poscount3 = poscount + poscount2 + poscount3
- poscount = 0
- a = i + 1 # 情感词的位置变化
-
- elif word in negdict: # 消极情感的分析,与上面一致
- negcount += 1
- d = 0
- for w in segtmp[a:i]:
- if w in mostdict:
- negcount *= 4.0
- elif w in verydict:
- negcount *= 3.0
- elif w in moredict:
- negcount *= 2.0
- elif w in ishdict:
- negcount *= 0.5
- elif w in degree_word:
- d += 1
- if judgeodd(d) == 'odd':
- negcount *= -1.0
- negcount2 += negcount
- negcount = 0
- negcount3 = negcount + negcount2 + negcount3
- negcount2 = 0
- else:
- negcount3 = negcount + negcount2 + negcount3
- negcount = 0
- a = i + 1
- elif word == '!' or word == '!': ##判断句子是否有感叹号
- for w2 in segtmp[::-1]: # 扫描感叹号前的情感词,发现后权值+2,然后退出循环
- if w2 in posdict or negdict:
- poscount3 += 2
- negcount3 += 2
- break
- i += 1 # 扫描词位置前移
-
-
- # 以下是防止出现负数的情况
- pos_count = 0
- neg_count = 0
- if poscount3 < 0 and negcount3 > 0:
- neg_count += negcount3 - poscount3
- pos_count = 0
- elif negcount3 < 0 and poscount3 > 0:
- pos_count = poscount3 - negcount3
- neg_count = 0
- elif poscount3 < 0 and negcount3 < 0:
- neg_count = -poscount3
- pos_count = -negcount3
- else:
- pos_count = poscount3
- neg_count = negcount3
-
- count1.append([pos_count, neg_count])
- count2.append(count1)
- count1 = []
-
- return count2
-
- def sentiment_score(senti_score_list):
- score = []
- for review in senti_score_list:
- score_array = np.array(review)
- Pos = np.sum(score_array[:, 0])
- Neg = np.sum(score_array[:, 1])
- AvgPos = np.mean(score_array[:, 0])
- AvgPos = float('%.1f'%AvgPos)
- AvgNeg = np.mean(score_array[:, 1])
- AvgNeg = float('%.1f'%AvgNeg)
- StdPos = np.std(score_array[:, 0])
- StdPos = float('%.1f'%StdPos)
- StdNeg = np.std(score_array[:, 1])
- StdNeg = float('%.1f'%StdNeg)
- score.append([Pos, Neg, AvgPos, AvgNeg, StdPos, StdNeg])
- return score
-
-
-
- data1= '今天上海的天气真好!我的心情非常高兴!如果去旅游的话我会非常兴奋!和你一起去旅游我会更加幸福!'
- data2= '今天上海天气真差,非常讨厌下雨,把我冻坏了,心情太不高兴了,不高兴,我真的很生气!'
- data3= '美国华裔科学家,祖籍江苏扬州市高邮县,生于上海,斯坦福大学物理系,电子工程系和应用物理系终身教授!'
- print(sentiment_score(sentiment_score_list(data1)))
- print(sentiment_score(sentiment_score_list(data2)))
- print(sentiment_score(sentiment_score_list(data3)))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。