赞
踩
到现在毕业设终于开始系统做实验写论文了,每解决一个小问题写一篇博客纪念一下:
毕业设计内容:卷积神经网络裂缝图像识别
本博客内容:图像预处理时,将高分辨率图像(10241024)标准化为小尺寸图像(227227)
直接上代码,有问题的请私信我或者评论区交流。
import cv2 as cv import os def crop_image(image_dir, output_path, size): # image_dir 批量处理图像文件夹 size 裁剪后的尺寸 # 获取图片路径列表 file_path_list = [] for filename in os.listdir(image_dir): file_path = os.path.join(image_dir, filename) file_path_list.append(file_path) # 逐张读取图片剪裁 for counter, image_path in enumerate(file_path_list): image = cv.imread(image_path) h, w = image.shape[0:2] h_no = h // size w_no = w // size for row in range(0, h_no): for col in range(0, w_no): cropped_img = image[size*row : size*(row+1), size*col : size*(col+1), : ] cv.imwrite(output_path + "img_" + str(counter) + f"crop_{row}_{col}" + ".png", cropped_img) if __name__ == "__main__": image_dir = "D:\\Pycharm_MachineLearning\\cnn_experiment_tool\\crack\\" output_path = "D:\\Pycharm_MachineLearning\\cnn_experiment_tool\\resized_crack\\" size = 227 crop_image(image_dir, output_path, size)
结果如下:
原图10241024,48张
裁剪后图像768张,227227
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。