赞
踩
目录
人脸识别4:Android InsightFace实现人脸识别Face Recognition(含源码)
(2)依赖库说明(OpenCV+OpenCL+base-utils+TNN)
(8) 运行APP闪退:dlopen failed: library "libomp.so" not found
这是项目《人脸识别Face Recognition》系列之《Android InsightFace实现人脸识别Face Recognition》;项目基于开源ArcFace(也称InsightFace)模型搭建一套完整的Android人脸识别系统(Face Recognition or Face Identification);我们将开发一个简易的、可实时运行的人脸识别Android Demo。Android版本人脸识别模型推理支持CPU和GPU加速,在GPU(OpenCL)加速下,可以达到实时的人脸识别效果,非常适合在Linux开发板和Android系统开发板上部署。
整套人脸识别系统核心算法包含人脸检测和人脸关键点检测,人脸校准,人脸特征提取以及人脸比对(1:1)和人脸搜索(1:N)。本项目人脸识别系统可以达到目前商业级别的人脸识别准确率,在误识率(FAR)0.1%的情况下,可提供99.78%的通过率(TAR);可以满足人脸比对,人脸签到、人脸门禁、人员信息查询、安防监控等人脸识别应用场景。
Android版本人脸检测和人脸识别效果:
【尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/130600600
更多项目《人脸识别Face Recognition》系列文章请参考:
项目依赖库主要有OpenCV,base-utils,TNN和OpenCL(用于加速),项目源码已经包含了相关依赖库,且都已经配置好,无需安装;使用Android Studio直接build即可运行App Demo ;
Android SDK,NDK,Jave等版本信息,请参考:
项目模型推理采用TNN部署框架(支持多线程CPU和GPU加速推理);图像处理采用OpenCV库,模型加速采用OpenCL,在普通手机设备即可达到实时处理。项目Android源码已经配置好OpenCV+OpenCL+base-utils+TNN依赖库,无需重新配置,Android Studio直接build,即可运行。
人脸识别核心算法均采用C++实现,上层Java应用使用JNI调用底层算法,CMake最低版本3.5.0,这是CMakeLists.txt,其中主要配置OpenCV+OpenCL+base-utils+TNN这四个库:
- cmake_minimum_required(VERSION 3.5.0)
- project("TNN")
- add_compile_options(-fPIC) # fix Bug: can not be used when making a shared object
- #set(CMAKE_BUILD_TYPE Release)
- #set(CMAKE_BUILD_TYPE "Release" CACHE STRING "Build type (default Debug)" FORCE)
- #set(CMAKE_CXX_FLAGS "-Wall -std=c++11 -pthread")
- set(CMAKE_BUILD_TYPE "Release" CACHE STRING "set build type to release" FORCE)
-
- # opencv set
- # copy `OpenCV-android-sdk/sdk` to `3rdparty/opencv/`
- set(OpenCV_DIR ${CMAKE_SOURCE_DIR}/3rdparty/opencv/sdk/native/jni)
- find_package(OpenCV REQUIRED)
- include_directories(${CMAKE_SOURCE_DIR}/3rdparty/opencv/sdk/native/jni/include)
-
-
- # base_utils
- set(BASE_ROOT 3rdparty/base-utils) # 设置base-utils所在的根目录
- add_subdirectory(${BASE_ROOT}/base_utils/ base_build) # 添加子目录到build中
- include_directories(${BASE_ROOT}/base_utils/include)
- include_directories(${BASE_ROOT}/base_utils/src)
- MESSAGE(STATUS "BASE_ROOT = ${BASE_ROOT}")
-
-
-
- # TNN set
- # Creates and names a library, sets it as either STATIC
- # or SHARED, and provides the relative paths to its source code.
- # You can define multiple libraries, and CMake builds it for you.
- # Gradle automatically packages shared libraries with your APK.
- # build for platform
- # set(TNN_BUILD_SHARED OFF CACHE BOOL "" FORCE)
- if (CMAKE_SYSTEM_NAME MATCHES "Android")
- set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)
- set(TNN_ARM_ENABLE ON CACHE BOOL "" FORCE)
- set(TNN_BUILD_SHARED OFF CACHE BOOL "" FORCE)
- set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE) # Multi-Thread
- #set(TNN_HUAWEI_NPU_ENABLE OFF CACHE BOOL "" FORCE)
- add_definitions(-DTNN_OPENCL_ENABLE) # for OpenCL GPU
- add_definitions(-DTNN_ARM_ENABLE) # for Android CPU
- add_definitions(-DDEBUG_ANDROID_ON) # for Android Log
- add_definitions(-DPLATFORM_ANDROID)
- elseif (CMAKE_SYSTEM_NAME MATCHES "Linux")
- set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)
- set(TNN_CPU_ENABLE ON CACHE BOOL "" FORCE)
- set(TNN_X86_ENABLE OFF CACHE BOOL "" FORCE)
- set(TNN_QUANTIZATION_ENABLE OFF CACHE BOOL "" FORCE)
- set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE) # Multi-Thread
- add_definitions(-DTNN_OPENCL_ENABLE) # for OpenCL GPU
- add_definitions(-DDEBUG_ON) # for WIN/Linux Log
- add_definitions(-DDEBUG_LOG_ON) # for WIN/Linux Log
- add_definitions(-DDEBUG_IMSHOW_OFF) # for OpenCV show
- add_definitions(-DPLATFORM_LINUX)
- elseif (CMAKE_SYSTEM_NAME MATCHES "Windows")
- set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)
- set(TNN_CPU_ENABLE ON CACHE BOOL "" FORCE)
- set(TNN_X86_ENABLE ON CACHE BOOL "" FORCE)
- set(TNN_QUANTIZATION_ENABLE OFF CACHE BOOL "" FORCE)
- set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE) # Multi-Thread
- add_definitions(-DTNN_OPENCL_ENABLE) # for OpenCL GPU
- add_definitions(-DDEBUG_ON) # for WIN/Linux Log
- add_definitions(-DDEBUG_LOG_ON) # for WIN/Linux Log
- add_definitions(-DDEBUG_IMSHOW_OFF) # for OpenCV show
- add_definitions(-DPLATFORM_WINDOWS)
- endif ()
- set(TNN_ROOT 3rdparty/TNN)
- include_directories(${TNN_ROOT}/include)
- include_directories(${TNN_ROOT}/third_party/opencl/include)
- add_subdirectory(${TNN_ROOT}) # 添加外部项目文件夹
- set(TNN -Wl,--whole-archive TNN -Wl,--no-whole-archive)# set TNN library
- MESSAGE(STATUS "TNN_ROOT = ${TNN_ROOT}")
-
- # NPU Set
- if (TNN_HUAWEI_NPU_ENABLE)
- add_library(hiai
- SHARED
- IMPORTED)
- set_target_properties(hiai
- PROPERTIES
- IMPORTED_LOCATION
- ${CMAKE_SOURCE_DIR}/src/main/jni/thirdparty/hiai_ddk/${ANDROID_ABI}/libhiai.so)
-
- add_library(hiai_ir
- SHARED
- IMPORTED)
- set_target_properties(hiai_ir
- PROPERTIES
- IMPORTED_LOCATION
- ${CMAKE_SOURCE_DIR}/src/main/jni/thirdparty/hiai_ddk/${ANDROID_ABI}/libhiai_ir.so)
-
- add_library(hiai_ir_build
- SHARED
- IMPORTED)
- set_target_properties(hiai_ir_build
- PROPERTIES
- IMPORTED_LOCATION
- ${CMAKE_SOURCE_DIR}/src/main/jni/thirdparty/hiai_ddk/${ANDROID_ABI}/libhiai_ir_build.so)
-
- endif ()
-
-
- find_library( # Sets the name of the path variable.
- log-lib
- # Specifies the name of the NDK library that
- # you want CMake to locate.
- log)
-
- # Specifies libraries CMake should link to your target library. You
- # can link multiple libraries, such as libraries you define in the
- # build script, prebuilt third-party libraries, or system libraries.
-
- # dmcv库
- include_directories(src)
-
- set(SRC_LIST
- src/face_alignment.cpp
- src/face_recognizer.cpp
- src/face_feature.cpp
- src/object_detection.cpp
- src/Interpreter.cpp)
-
- MESSAGE(STATUS "DIR_SRCS = ${SRC_LIST}")
-
- # JNI接口库
- add_library(tnn_wrapper SHARED jni_interface.cpp ${SRC_LIST})
- target_link_libraries( # Specifies the target library.
- tnn_wrapper
- -ljnigraphics
- # Links the target library to the log library
- # included in the NDK.
- ${log-lib}
- ${android-lib}
- ${jnigraphics-lib}
- ${TNN}
- ${OpenCV_LIBS}
- base_utils
- )
-
- if (TNN_HUAWEI_NPU_ENABLE)
- target_link_libraries( # Specifies the target library.
- tnn_wrapper hiai hiai_ir hiai_ir_build)
- endif ()
人脸识别主要包含人脸比对(1:1)和人脸搜索(1:N)两大功能,涉及的核心算法主要包含:人脸检测和人脸关键点检测,人脸校准,人脸特征提取以及人脸比对(1:1)和人脸搜索(1:N);当然,实际业务中,可能还会增加人脸质量检测以及活体识别等算法,碍于篇幅,后续再分享活体识别算法。
下图给出本项目人脸识别系统算法实现架构流程图:
项目实现了人脸识别的核心算法,包含人脸检测和人脸关键点检测,人脸校准,人脸特征提取以及人脸比对(1:1)和人脸搜索(1:N)等功能,可以参文件(src/main/java/com/cv/tnn/model/FaceRecognizer.java),实现人脸识别的基本功能
- package com.cv.tnn.model;
-
- import android.graphics.Bitmap;
- import android.graphics.BitmapFactory;
- import android.util.Log;
-
- import java.io.File;
- import java.util.List;
-
- public class FaceRecognizer {
-
- private static final String TAG = "FaceRecognizer";
-
- public FaceRecognizer(String det_model, String rec_model, String root, String database, int model_type, int num_thread, boolean useGPU) {
- Log.w(TAG, "det_model =" + det_model);
- Log.w(TAG, "rec_model =" + rec_model);
- Log.w(TAG, "root =" + root);
- Log.w(TAG, "database =" + database);
- Log.w(TAG, "model_type=" + model_type);
- Log.w(TAG, "num_thread=" + String.valueOf(num_thread));
- Log.w(TAG, "useGPU =" + String.valueOf(useGPU));
- FileChooseUtil.createFolder(root);
- Detector.init(det_model, rec_model, root, database, model_type, num_thread, useGPU);
- }
-
- /***
- * 进行人脸检测
- * @param bitmap 输入图像
- * @param det_conf_thresh 人脸检测置信度阈值,范围0.~1.0
- * @param det_iou_thresh 人脸检测IOU阈值,范围0.~1.0
- * @return
- */
- public FrameInfo[] detectFace(Bitmap bitmap, float det_conf_thresh, float det_iou_thresh) {
- FrameInfo[] result = null;
- result = Detector.detectFace(bitmap, det_conf_thresh, det_iou_thresh);
- return result;
- }
-
-
- /***
- * 通过导入文件夹路径,进行批量注册人脸,
- * 请将图片按照[ID-XXXX.jpg]命名,如:张三-image.jpg
- * @param folder 文件夹路径
- * @param det_conf_thresh 人脸检测置信度阈值,范围0.~1.0
- * @param det_iou_thresh 人脸检测IOU阈值,范围0.~1.0
- */
- public void registerFromFolder(String folder, float det_conf_thresh, float det_iou_thresh) {
- Log.w(TAG, "database folder=" + folder);
- List<String> image_list = FileChooseUtil.getImagePathFromSD(folder);
- for (int i = 0; i < image_list.size(); i++) {
- String image_file = image_list.get(i);
- FrameInfo[] result = registerFromFile(image_file, det_conf_thresh, det_iou_thresh);
- }
- }
-
- /***
- * 通过导入图片的路径,进行注册
- * 请将图片按照[ID-XXXX.jpg]命名,如:张三-image.jpg
- * @param image_file 图片的路径
- * @param det_conf_thresh 人脸检测置信度阈值,范围0.~1.0
- * @param det_iou_thresh 人脸检测IOU阈值,范围0.~1.0
- * @return
- */
- public FrameInfo[] registerFromFile(String image_file, float det_conf_thresh, float det_iou_thresh) {
- String[] paths = image_file.split(File.separator);
- String basename = paths[paths.length - 1];
- String face_id = basename.split("-")[0];
- if (face_id.length() == basename.length()) {
- Log.w(TAG, "file=" + image_file + ",图片名称不合法,请将图片按照[ID-XXXX.jpg]命名,如:张三-image.jpg");
- }
- Bitmap bitmap = BitmapFactory.decodeFile(image_file);
- FrameInfo[] result = registerFromBitmap(face_id, bitmap, det_conf_thresh, det_iou_thresh);
- if (result.length > 0) {
- Log.w(TAG, "file=" + image_file + ",注册人脸成功:ID=" + face_id);
- } else {
- Log.w(TAG, "file=" + image_file + ",注册人脸失败:ID=" + face_id);
- }
- return result;
- }
-
- /***
- * 通过导入Bitmap图像,进行注册
- * @param face_id 人脸ID
- * @param bitmap Bitmap图像
- * @param det_conf_thresh 人脸检测置信度阈值,范围0.~1.0
- * @param det_iou_thresh 人脸检测IOU阈值,范围0.~1.0
- * @return
- */
- public FrameInfo[] registerFromBitmap(String face_id, Bitmap bitmap, float det_conf_thresh, float det_iou_thresh) {
- FrameInfo[] result = null;
- //bitmap = bitmap.copy(Bitmap.Config.ARGB_8888, true);
- result = Detector.registerFace(face_id, bitmap, det_conf_thresh, det_iou_thresh);
- return result;
- }
-
- /***
- * 人脸识别1:N人脸搜索
- * @param bitmap Bitmap图像
- * @param max_face 最大人脸个数,默认为-1,表示全部人脸
- * @param det_conf_thresh 人脸检测置信度阈值,范围0.~1.0
- * @param det_iou_thresh 人脸检测IOU阈值,范围0.~1.0
- * @param rec_conf_thresh 人脸识别相似度阈值,范围0.~1.0
- * @return
- */
- public FrameInfo[] detectSearch(Bitmap bitmap, int max_face, float det_conf_thresh, float det_iou_thresh, float rec_conf_thresh) {
- FrameInfo[] result = null;
- result = Detector.detectSearch(bitmap, max_face, det_conf_thresh, det_iou_thresh, rec_conf_thresh);
- return result;
- }
-
- /***
- * 人脸识别1:1人脸验证,比较两张人脸的相似性
- * @param bitmap1 输入第1张人脸图像
- * @param bitmap2 输入第2张人脸图像
- * @param det_conf_thresh 人脸检测置信度阈值,范围0.~1.0
- * @param det_iou_thresh 人脸检测IOU阈值,范围0.~1.0
- * @return
- */
- public float compareFace(Bitmap bitmap1, Bitmap bitmap2, float det_conf_thresh, float det_iou_thresh) {
- return Detector.compareFace(bitmap1, bitmap2, det_conf_thresh, det_iou_thresh);
- }
-
-
- /***
- * 提取人脸特征(先进行检测,再提取人脸特征)
- * @param bitmap 输入人脸图像
- * @param max_face 最大人脸个数,默认为-1,表示全部人脸
- * @param det_conf_thresh 人脸检测置信度阈值,范围0.~1.0
- * @param det_iou_thresh 人脸检测IOU阈值,范围0.~1.0
- * @return
- */
- public FrameInfo[] getFeature(Bitmap bitmap, int max_face, float det_conf_thresh, float det_iou_thresh) {
- FrameInfo[] result = null;
- result = Detector.getFeature(bitmap, max_face, det_conf_thresh, det_iou_thresh);
- return result;
- }
-
-
- /***
- * 清空人脸数据库(会删除所有已经注册的人脸数据,谨慎操作)
- */
- public void clearDatabase() {
- Detector.clearDatabase();
- }
- }
人脸检测的方法比较多,项目Python版本人脸识别提供两种人脸检测方法:一种是基于MTCNN的通用人脸检测模型,另一种是轻量化的、快速的RFB人脸检测模型;这个两个模型都能实现人脸检测,并同时预测人脸的五个关键点(Landmark)。C/C++和Android版本只提供RFB人脸检测和关键点检测模型。
模型 | Paper | 源码 | 说明 |
MTCNN | Paper | Link |
|
RFB | Paper | Link |
|
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。