赞
踩
在tiktok看到的计算机视觉大佬恩培,然后跟着一起完成了这个简单的计算机视觉的小项目。
- """
- Date: 2021-11-16
- 功能:手势操作电脑音量
- 1、使用OpenCV读取摄像头视频流;
- 2、识别手掌关键点像素坐标;
- 3、根据拇指和食指指尖的坐标,利用勾股定理计算距离;
- 4、将距离等比例转为音量大小,控制电脑音量
- """
-
- # 导入OpenCV
- import cv2
- # 导入mediapipe
- import mediapipe as mp
- # 导入电脑音量控制模块
- from ctypes import cast, POINTER
- from comtypes import CLSCTX_ALL
- from pycaw.pycaw import AudioUtilities, IAudioEndpointVolume
-
- # 导入其他依赖包
- import time
- import math
- import numpy as np
-
-
- class HandControlVolume:
- def __init__(self):
- # 初始化medialpipe
- self.mp_drawing = mp.solutions.drawing_utils
- self.mp_drawing_styles = mp.solutions.drawing_styles
- self.mp_hands = mp.solutions.hands
-
- # 获取电脑音量范围
- devices = AudioUtilities.GetSpeakers()
- interface = devices.Activate(
- IAudioEndpointVolume._iid_, CLSCTX_ALL, None)
- self.volume = cast(interface, POINTER(IAudioEndpointVolume))
- self.volume.SetMute(0, None)
- self.volume_range = self.volume.GetVolumeRange()
-
- # 主函数
- def recognize(self):
- # 计算刷新率
- fpsTime = time.time()
-
- # OpenCV读取视频流
- cap = cv2.VideoCapture(0)
- # 视频分辨率
- resize_w = 640
- resize_h = 480
-
- # 画面显示初始化参数
- rect_height = 0
- rect_percent_text = 0
-
- with self.mp_hands.Hands(min_detection_confidence=0.7,
- min_tracking_confidence=0.5,
- max_num_hands=2) as hands:
- while cap.isOpened():
- success, image = cap.read()
- image = cv2.resize(image, (resize_w, resize_h))
-
- if not success:
- print("空帧.")
- continue
-
- # 提高性能
- image.flags.writeable = False
- # 转为RGB
- image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
- # 镜像
- image = cv2.flip(image, 1)
- # mediapipe模型处理
- results = hands.process(image)
-
- image.flags.writeable = True
- image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
- # 判断是否有手掌
- if results.multi_hand_landmarks:
- # 遍历每个手掌
- for hand_landmarks in results.multi_hand_landmarks:
- # 在画面标注手指
- self.mp_drawing.draw_landmarks(
- image,
- hand_landmarks,
- self.mp_hands.HAND_CONNECTIONS,
- self.mp_drawing_styles.get_default_hand_landmarks_style(),
- self.mp_drawing_styles.get_default_hand_connections_style())
-
- # 解析手指,存入各个手指坐标
- landmark_list = []
- for landmark_id, finger_axis in enumerate(
- hand_landmarks.landmark):
- landmark_list.append([
- landmark_id, finger_axis.x, finger_axis.y,
- finger_axis.z
- ])
- if landmark_list:
- # 获取大拇指指尖坐标
- thumb_finger_tip = landmark_list[4]
- thumb_finger_tip_x = math.ceil(thumb_finger_tip[1] * resize_w)
- thumb_finger_tip_y = math.ceil(thumb_finger_tip[2] * resize_h)
- # 获取食指指尖坐标
- index_finger_tip = landmark_list[8]
- index_finger_tip_x = math.ceil(index_finger_tip[1] * resize_w)
- index_finger_tip_y = math.ceil(index_finger_tip[2] * resize_h)
- # 中间点
- finger_middle_point = (thumb_finger_tip_x + index_finger_tip_x) // 2, (
- thumb_finger_tip_y + index_finger_tip_y) // 2
- # print(thumb_finger_tip_x)
- thumb_finger_point = (thumb_finger_tip_x, thumb_finger_tip_y)
- index_finger_point = (index_finger_tip_x, index_finger_tip_y)
- # 画指尖2点
- image = cv2.circle(image, thumb_finger_point, 10, (255, 0, 255), -1)
- image = cv2.circle(image, index_finger_point, 10, (255, 0, 255), -1)
- image = cv2.circle(image, finger_middle_point, 10, (255, 0, 255), -1)
- # 画2点连线
- image = cv2.line(image, thumb_finger_point, index_finger_point, (255, 0, 255), 5)
- # 勾股定理计算长度
- line_len = math.hypot((index_finger_tip_x - thumb_finger_tip_x),
- (index_finger_tip_y - thumb_finger_tip_y))
-
- # 获取电脑最大最小音量
- min_volume = self.volume_range[0]
- max_volume = self.volume_range[1]
- # 将指尖长度映射到音量上
- vol = np.interp(line_len, [50, 300], [min_volume, max_volume])
- # 将指尖长度映射到矩形显示上
- rect_height = np.interp(line_len, [50, 300], [0, 200])
- rect_percent_text = np.interp(line_len, [50, 300], [0, 100])
-
- # 设置电脑音量
- self.volume.SetMasterVolumeLevel(vol, None)
-
- # 显示矩形
- cv2.putText(image, str(math.ceil(rect_percent_text)) + "%", (10, 350),
- cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 0), 3)
- image = cv2.rectangle(image, (30, 100), (70, 300), (255, 0, 0), 3)
- image = cv2.rectangle(image, (30, math.ceil(300 - rect_height)), (70, 300), (255, 0, 0), -1)
-
- # 显示刷新率FPS
- cTime = time.time()
- fpsTime = cTime
- cv2.putText(image, "FPS: " + str(int(fps_text)), (10, 70),
- cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 0), 3)
- # 显示画面
- cv2.imshow('MediaPipe Hands', image)
- break
- cap.release()
-
-
- # 开始程序
- control = HandControlVolume()
- control.recognize()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。