当前位置:   article > 正文

频谱,频谱密度

均匀冲激序列的频谱密度

点拨:

(1)本节的重点不是怎么求傅里叶变换或者傅里叶级数,而是了解掌握 常见的信号 的傅里叶变换,所以 解题时用的方法都是常见的角度 公式 和技巧。

将时域转换成频域,为了便于分析。学习第一章 (确知信号)也是为了后面章节(第二章 随机过程)的学习做准备。

确知信号 有明确的时域表达式,随机过程没有明确的时域表达式,所以 可以将信号分为确知信号和随机信号 没有交叉的两大类。

(2)看到一个确知信号的时域表达式,需要先判断是功率信号还是能量信号吗?视情况而定。有的信号需要求它的能量,如果能出来,那就是能量信号;有的信号就是常见的信号,知道它的图像,就可以直接判断是什么类的信号了。但是,但大部分情况下的计算,不需要考虑它是什么信号,直接用傅氏变换的相关性质计算就可以了。所以,根据问题来思考需要考虑什么---再强调一遍!根据命题人的意图来做题!。

1.

欧拉公式:   cosx=(1/2 )[e^jx + e^(-jx)]     sinx= (1/2j) [e^jx - e^(-jx)]

抽样函数:   Sa(x)=sinx/x,limx=0 sinx/x=1

分部积分:  ∫ba  F1 (x)F2(x)dx =  [F1(x)F2(x)]ba   ∫bF1(x)F2’(x) dx

换元积分:(dw时)2∏nf0=w0 (dt时不用), df=(1/2∏) dw

2.功率信号- 周期信号 - 频谱函数:F(w)~w

(1)频谱函数(f(t)的傅里叶级数的系数): F(f)=F(nf0)=(1/T)∫(-½T)(½T)  f(t) e^(-j2∏nf0t) dt       (f=nf0)

(2)周期信号(的傅里叶级数):              f(t)=Σ-∞  Fn e^(j2∏nf0)

周期信号的频谱函数Fn是离散的,只有在f0的整数倍上取值。

周期性方波:

          (1)周期性方波偶函数的频谱函数:Vζ/T Sa(n∏ζ/T)(偶函数图像),高V 宽ζ,频谱零点为 2∏/ζ , 4∏/ζ, 6∏/ζ...

          (2)周期性方波非偶:频谱函数是复数表达式。

 

非周期性的功率信号:可以看做T→∞,但是一般积分很难积出来

3.能量信号- 非周期信号 -频谱密度函数:频率密度的谱 :能量信号f(t)↔频谱密度函数F(w)

                 非周期信号:冲激信号,门函数,直流信号

   (1)能量信号f(t)↔频谱密度函数F(w)

             f(t)的傅里叶变换是F(f):   F(f)=-∞  f(t) e^(-j2∏ft) dt      (f=nf0)-----------因为调频调的是f,所以记住重点关于f的公式形式,w的形式可很快的推导

             【F(f)的逆傅里叶变换是f(t)】:  f(t)= -∞  F(f) e^(j2∏ft) df         

        即       

              【F(w)的逆傅里叶变换是f(t):】 (时域) f(t)=(1/2∏) -∞  F(f) e^(jwt) dw      

              f(t)的傅里叶变换是F(w):  (频域)   F(w)=-∞  f(t) e^(-jwt) dt          注意:因为是对t积分,所以没有换元积分,所以直接2∏f=w

      即

            时域<-->频域

   (2)矩形脉冲:  高不一定为1(高为A的脉冲,矩形的,宽度ζ)

          单脉冲: 门函数 ga(t)的频谱密度= Aζ Sa(wζ/2),零点是 1/ζ,2/ ζ, 3/ζ,...-------ga(t)↔Aζ Sa(∏fζ) =Aζ Sa(wζ/2)     

                                              注意:I.如果是Ga(w)~w图像,w=2∏f,频谱零点w=2∏/ζ,4∏/ζ,...

                    II.频谱的第一个零点=时域信号的  2pi*高/宽度   

         周期性冲击串:∑A ga(t-nT)  ↔/

 

(3)(单位)冲激函数δ(t)(高为1)的频谱密度  =1 (叫 均匀谱,又叫白色谱)--------------------------即  δ(t)↔1

                                     注意:δ(t)是偶函数。所以δ(t-t0)=δ(t0-t)     

                                     δ函数在t=t0对f(t)的抽样f(t0)   =-∞  f(t)δ(t-t0) dt  ,证明:

                                              -∞  f(t)δ(t-t0) dt  =  ∫-∞  f(t)δ(t0-t) dt = ∫t0-t0+  f(t)δ(t0-t) dt = t0-t0+  f(t0)δ(t0-t) dt =f(t0)t0-t0+ δ(t0-t) dt = f(t0)

(4)直流信号f(t)=1 的频谱密度= 2∏ δ(w)-----------------------即1  2∏ δ(w)                                  

(5)功率信号(只说周期信号)的频谱密度:认为T→∞,引入冲激函数表示频谱

 

        I(周期信号)余弦信号 f(t)=cos 2∏f0t =  cos w0t =(1/2) [e^jw0t + e^(-jw0t)]  ↔  ∏[δ(w-w0)+δ(w+w0)]

        II(周期信号)正弦信号 f(t)=sin 2∏f0t =  sin w0t =(1/ 2j) [e^jw0t - e^(-jw0t)]  ↔  (∏/j)[δ(w-w0)-δ(w+w0)]-----是复数,带相位j,所以一般不选用。

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

傅里叶变换性质

1.对称性:   f(t)↔F(w) 

                 F(t)↔2∏ f(-w)             ------时域有限↔频域无限 ,时域无限↔频域有限

2.线性:      fi(t)↔Fi(w) ,i=1,2...

                 Fi(t)↔2∏ fi(-t)   

3.比例性:     f(t)↔F(w) 

                 f(at)↔(1/|a|) F(w/a)     ------时域越宽↔频域越窄 ,时域越窄↔频域越宽

4.频率搬移特性:(调制概念)

f(t) eˆ(jw0t) ↔   F(w-w0)                      ------jw0t中有相位j,所以不常使用eˆ(jw0t)作为调制信号

f(t) cosw0t   ↔  ½ [F(w-w0)+F(w+w0)]   ------将f(t)搬到了以w0为中心(比如搬到高频点)

5.时移性:(时移了一个信号,幅度谱F(w)没变,相位谱变了一个-w0t

f(t-t0)↔F(w) eˆ(-jw0t)

6.微分特性 :(相当于经过了一个RC电路)

7.积分特性

8.时域卷积:(输入信号f(t)经过系统信号f2(t)(传输函数H(w)=F2(w))后的输出信号R(t)就是f1f2的卷积)(因为按照时域分析比较复杂,所以转换到频域分析)

f1(t)*f2(t)↔F1(w) F2(w)

f1(t) f2(t)↔(1/2∏) [F1(w) * F2(w)]

 

--------------------------------------------------------------------------------------------------------------------------------------------------------------

一些证明:(如果有些重要的公式记不牢的话,可以帮助记忆)

1.  f(t)=1 ↔ F(w)=2∏δ(w)

    证:   f(t)=(1/2∏)-∞ 2∏ δ(w) e^(jwt) dw

2.  周期性冲激函数:δT(t)=Σ n=-∞∞ δ(t-nT)        

                              因为单位冲击串δ(t)的(傅里叶级数的系数)   F(w)=(1/T) ∫(-½T)(½T)δ(t) e^(-jnw0t) dt = 1/T

   所以,  δT(t)= (1/T)Σ n=-∞ e^(jnw0t)    ↔FT(w) =  w0 Σ n=-∞  δ(w-nw0)

   所以,周期性冲击串(高为1)的 傅里叶变换F(w)~w 也是 周期性冲击串 (高为w0=2∏/T)!!

3.周期性矩形脉冲: GT(t)= Σ n=-∞ G(t-nT) 

因为门函数G(t)(高为A=1)的(傅里叶级数的系数)F(w)=(1/T) ∫(-½T)(½T)G(t) e^(-jnw0t) dt =(ζ/T)Sa(nw0ζ/2)    ζSa(w0ζ/2)

所以,  GT(t)= (ζ/T)Σ n=-∞ Sa(nw0ζ/2) e^(jnw0t)    ↔ FT(w)=  w0 Σ n=-∞  δ(w-nw0)

4.图像

(1)单位冲激函数 的F(w)~w 是 高为1的均匀谱,

 直流信号f(t)=1 的F(w)~w 是 高为2∏的冲激函数,

  即:   单位冲激函数图像 ↔ 直流信号的图像 

           直流信号的图像 ↔ 单位冲激函数图像(高为1)

(2)门函数 的F(w)~w 是 抽样函数的拉伸,经过点(0,ζ)  (1/ζ,0) (2/ζ,0) ...图像是连续谱

       周期矩形信号的F(w)~w 是 抽样函数的拉伸...F(w)图像是离散谱, 在X=nw0处取值,n=0,+/- 1,+/- 2,...

****************************************************************** 

习题易错点点拨:

1.求功率信号s(t)的频谱:

功率信号和它的频谱函数 不是傅里叶变换对!

S(w)是s(w)展开成傅里叶级数的系数,只能用系数的表达式求得。

2.指数函数的模:

cosx+ j sinx =e^jx 

cosx- j sinx =e^-jx

所以,|e^jx|=|e^-jx|=1

3. 

1/j= -j

 

 

 

 

 

 

 

 

         

        

 

    

 

                                             

 

 

 

                                    

       

       

 

转载于:https://www.cnblogs.com/flowerslip/p/5943748.html

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/94917
推荐阅读
相关标签
  

闽ICP备14008679号