当前位置:   article > 正文

BraTS数据集处理详解(附代码详解)_brats-19 challenge dataset数据集介绍

brats-19 challenge dataset数据集介绍

代码参考:https://github.com/sinclairjang/3D-MRI-brain-tumor-segmentation-using-autoencoder-regularization
数据集来源:BraTs 2018
参考论文:https://arxiv.org/abs/1810.11654

3D-MRI-brain-tumor-segmentation-using-autoencoder-regularization

参考作者数据集预处理方式,后续模型将持续更新…

数据集详解

  • BraTS 数据集是脑肿瘤分割比赛数据集,brats 2018中的训练集( training set) 有285个病例,每个病例有四个模态(t1、t2、flair、t1ce),需要分割三个部分:whole tumor(WT), enhance tumor(ET), and tumor core(TC).
  • t1、t2、flair、t1ce可以理解为核磁共振图像的四个不同纬度信息,每个序列的图像shape为(155,240,240)
  • 目标是分割出三个label。对应医学中的三个不同肿瘤类型。
  • 以上是本人理解,非医学专业,如有错误欢迎指正。

数据集介绍

  1. BraTs数据集类型为XX.nii.gz,分别对应t1、t2、flair、t1ce,seg,其中seg是分割图像。图像大小均为(155,240,240)

数据集处理(附代码详解)

一. data load

t1 = glob.glob(r'/home/locco/brats17/MICCAI_BraTS_2019_Data_Training/MICCAI_BraTS_2019_Data_Training/*/*/*t1.nii.gz')
t2 = glob.glob(r'/home/locco/brats17/MICCAI_BraTS_2019_Data_Training/MICCAI_BraTS_2019_Data_Training/*/*/*t2.nii.gz')
flair = glob.glob(r'/home/locco/brats17/MICCAI_BraTS_2019_Data_Training/MICCAI_BraTS_2019_Data_Training/*/*/*flair.nii.gz')
t1ce = glob.glob(r'/home/locco/brats17/MICCAI_BraTS_2019_Data_Training/MICCAI_BraTS_2019_Data_Training/*/*/*t1ce.nii.gz')
seg = glob.glob(r'/home/locco/brats17/MICCAI_BraTS_2019_Data_Training/MICCAI_BraTS_2019_Data_Training/*/*/*seg.nii.gz')
  • 1
  • 2
  • 3
  • 4
  • 5

分别生成t1、t2、flair、t1ce、seg对应文件目录
利用SimpleITK读取图像

def read_img(img_path):
    
    return sitk.GetArrayFromImage(sitk.ReadImage(img_path))
  • 1
  • 2
  • 3

读取图像,并可视化(可视化的是三维图像中的一个切片图像)

import matplotlib.pyplot as plt
img = (read_img(t1[0])[100]).astype(np.uint8)
plt.imshow(img)

  • 1
  • 2
  • 3
  • 4

T1序列图像切片
在这里插入图片描述
seg分割图片
在这里插入图片描述

二. 图像预处理

1. 数据预处理

  1. 将原图像压缩为(80,96,64)大小图像,并将4个序列图像放在统一纬度,所以经过数据处理后的每个样本图像的维度为(4,80,96,64)
  2. 同样将mask图像作相同处理,由于分割图像的label包含3个纬度信息(3个不同的肿瘤类型),所以处理后的mask纬度为(3,80,96,64)
def resize(img, shape, mode='constant', orig_shape=(155, 240, 240)):
    """
    Wrapper for scipy.ndimage.zoom suited for MRI images.
    """
    assert len(shape) == 3, "Can not have more than 3 dimensions"
    factors = (
        shape[0]/orig_shape[0],
        shape[1]/orig_shape[1], 
        shape[2]/orig_shape[2]
    )
    
    # Resize to the given shape
    return zoom(img, factors, mode=mode)

def preprocess(img, out_shape=None):
    """
    Preprocess the image.
    Just an example, you can add more preprocessing steps if you wish to.
    """
    if out_shape is not None:
        img = resize(img, out_shape, mode='constant')
    
    # Normalize the image
    mean = img.mean()
    std = img.std()
    return (img - mean) / std


def preprocess_label(img, out_shape=None, mode='nearest'):
    """
    Separates out the 3 labels from the segmentation provided, namely:
    GD-enhancing tumor (ET — label 4), the peritumoral edema (ED — label 2))
    and the necrotic and non-enhancing tumor core (NCR/NET — label 1)
    """
    ncr = img == 1  # Necrotic and Non-Enhancing Tumor (NCR/NET)
    
    ed = img == 2  # Peritumoral Edema (ED)
    et = img == 4  # GD-enhancing Tumor (ET)
    
    if out_shape is not None:
        ncr = resize(ncr, out_shape, mode=mode)
        ed = resize(ed, out_shape, mode=mode)
        et = resize(et, out_shape, mode=mode)
    return np.array([ncr, ed, et], dtype=np.uint8)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

二.生成data,label

input_shape = (4, 80, 96, 64)
output_channels = 3
data = np.empty((len(data_paths),) + input_shape, dtype=np.float32)
labels = np.empty((len(data_paths), output_channels) + input_shape[1:], dtype=np.uint8)
import math
# Parameters for the progress bar
total = len(data_paths)
step = 25 / total







    
for i, imgs in enumerate(data_paths):
    try:
        data[i] = np.array([preprocess(read_img(imgs[m]), input_shape[1:]) for m in ['t1', 't2', 't1ce', 'flair']], dtype=np.float32)
        labels[i] = preprocess_label(read_img(imgs['seg']), input_shape[1:])[None, ...]
        
        # Print the progress bar
        print('\r' + f'Progress: '
            f"[{'=' * int((i+1) * step) + ' ' * (24 - int((i+1) * step))}]"
            f"({math.ceil((i+1) * 100 / (total))} %)",
            end='')
    except Exception as e:
        print(f'Something went wrong with {imgs["t1"]}, skipping...\n Exception:\n{str(e)}')
        continue
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

总结

本文仅po出BraTs数据集加载与预处理部分,刚好本人最近再看医学图像分割方面的论文。由于数据集为3D MRI数据集,处理时还需要大家了解一定的医学图象知识。
作者原文中采用了一种改良的U-Net网络进行训练,后续将更新模型部分详解,欢迎交流。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/97941
推荐阅读
相关标签
  

闽ICP备14008679号