1 简介

本文基于对四轴飞行器的飞行原理,分析了其做各种飞行动作时的力学原理.在假设理想状态下通过坐标转换建立了动力学模型并进行进一步简化.最后采用增量式PID算法设计控制系统,在Simulink上搭建模型进行仿真,并对仿真结果分析.

2 部分代码

  1. %%%%%%%%%%%%%%% desired position %%%%%%%%%%%%%%%%%%%%%%
  2. xdes = 10;
  3. ydes = 18;
  4. zdes = -20;
  5. %%%%%%%%%%%%%%%structural parameters %%%%%%%%%%%%%%%%%%%
  6. m = 0.5;
  7. g = 9.8;
  8. Ixx =0.114;
  9. Iyy = 0.114;
  10. Izz = 0.158;
  11. yaw = 3/57.3;
  12. L = 0.2;
  13. %%%%%%%%%%%%%%%%%% save PID for x %%%%%%%%%%%%%%%%%%%%
  14. kpx = 0.8;
  15. kix = 1e-4;
  16. kdx = 1.3;
  17. %%%%%%%%%%%%%%%%%% save PID for y %%%%%%%%%%%%%%%%%%%%
  18. kpy = 0.8;
  19. kiy = 3e-4;
  20. kdy = 1.3;
  21. %%%%%%%%%%%%%%%%%% save PID for z %%%%%%%%%%%%%%%%%%%%
  22. kpz = 1.2;
  23. kiz = 1e-6;
  24. kdz = 2;
  25. %%%%%%%%%%%%%%%%%% save PD for phi %%%%%%%%%%%%%%%%%%%
  26. kpphi = 2000;
  27. kdphi = 4000;
  28. %%%%%%%%%%%%%%%%%% save PD for theta %%%%%%%%%%%%%%%%%
  29. kptheta = 2000;
  30. kdtheta = 4000;
  31. %%%%%%%%%%%%%%%%%% save PD for psi %%%%%%%%%%%%%%%%%%%
  32. kppsi = 800;
  33. kdpsi = 4000;
  34. %%%%%%%%%%%%%%%%%%% save tsim %%%%%%%%%%%%%%%%%%%%%%%%%%
  35. tsim = 20;
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.

3 仿真结果

【飞行器】模拟四旋翼飞行器飞行含Matlab源码_参考文献

【飞行器】模拟四旋翼飞行器飞行含Matlab源码_参考文献_02

4 参考文献

[1]黄伟. 四轴飞行器的动态特性及MATLAB仿真[J]. 福建质量管理, 2018, 000(019):298.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

【飞行器】模拟四旋翼飞行器飞行含Matlab源码_无人机_03