当前位置:   article > 正文

时间序列-AR模型与MA模型的原理与实现_ar model

ar model


ARIMA模型是AR模型(自回归模型)与MA模型(移动平均模型)结合后诞生的模型,因此在理解ARIMA之前,必须先理解AR与MA模型。由于ARIMA模型大多数时候只能处理单变量时间序列,因此AR与MA模型也只能够被用于单变量时间序列。

1 自回归模型AR Model

AR(自回归模型)是最早、最淳朴的时间序列模型之一,它适用于“时间-标签”一一对应的单变量时序数据。AR模型的基本思想可以被概括为一句谚语:罗马城不是一日建成的,今天的结果一定依赖于过去的积累,因此AR模型相信:一个时间点上的标签值一定是依赖于之前的时间点上的标签值而存在的。这一基本思想包含了两个假设:

  1. 不同时间点的标签值之间强相关(highly-correlated),位于时间点t的标签值一定强烈地受到t之前的标签值的影响。在数学上,这意味着两个时间点的标签值之间的相关系数会较大。
  2. 根据时间的基本属性,两个时间点之间相隔越远,相互之间的影响越弱(例如,昨天是否下雨对今天是否下雨的影响很大,但三个月前的某天是否下雨,对明天是否下雨的影响就相对较小)

在这两个前提假设下,AR模型将时间点之间的关系解构为:一个时间点上的标签值可以由过去某个时间段内的所有时间点上的标签值线性组合后构成(实际就是加权求和)。用数学公式表示则有:
y t = c + β 1 y t − 1 + β 2 y t − 2 + β 3 y t − 3 + … β p y t − p + z t ( 公式条件: β p ≠ 0 ) y_{t}=c+\beta_1y_{t-1}+\beta_2y_{t-2}+\beta_3y_{t-3}+…\beta_py_{t-p}+z_{t} \quad (公式条件:\beta_p≠0) yt=c+β1yt1+β2yt2+β3yt3+βpytp+zt(公式条件:βp=0)
其中 y t y_{t} yt表示在时间点

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/运维做开发/article/detail/1004099
推荐阅读
相关标签