当前位置:   article > 正文

InceptionV3代码实现(Pytorch)_inceptionv3 github

inceptionv3 github

Inception介绍

Inception网络是CNN发展史上一个重要的里程碑。在Inception出现之前,大部分流行CNN仅仅是把卷积层堆叠得越来越多,使网络越来越深,以此希望能够得到更好的性能。但是存在以下问题:

  1. 图像中突出部分的大小差别很大。
  2. 由于信息位置的巨大差异,为卷积操作选择合适的卷积核大小就比较困难。信息分布更全
    局性的图像偏好较大的卷积核,信息分布比较局部的图像偏好较小的卷积核。
  3. 非常深的网络更容易过拟合。将梯度更新传输到整个网络是很困难的。
  4. 简单地堆叠较大的卷积层非常消耗计算资源。

Inception module
解决方案:
为什么不在同一层级上运行具备多个尺寸的滤波器呢?网络本质上会变得稍微「宽一些」,而不是「更深」。作者因此设计了Inception 模块。
Inception模块( Inception module) : 它使用3个不同大小的滤波器(1x1、 3x3、 5x5)对输入执行卷积操作,此外它还会执行最大池化。所有子层的输出最后会被级联起来,并传送至下一个Inception模块。

  • 方面增加了网络的宽度,另一方面增加了网络对尺度的适应性
    在这里插入图片描述

实现降维的Inception模块:如前所述,深度神经网络需要耗费大量计算资源。为了降低算力成
本,作者在3x3和5x5卷积层之前添加额外的1x1卷积层,来限制输入通道的数量。尽管添加额
外的卷积操作似乎是反直觉的,但是1x1卷积比5x5卷积要廉价很多,而且输入通道数量减少也
有利于降低算力成本。
在这里插入图片描述
InceptionV1–Googlenet

  1. Googl eNet采用了Inception模块化(9个)的结构,共22层;
  2. 为了避免梯度消失,网络额外增加了2个辅助的softmax用于向前传导梯度(只用于训练)。

Inception V2在输入的时候增加了BatchNormalization:
所有输出保证在0~1之间。

  • 所有输出数据的均值接近0,标准差接近1的正太分布。使其落入激活函数的敏感区,避免梯度消失,加快收敛。
  • 加快模型收敛速度,并且具有-定的泛化能力。
  • 可以减少dropout的使用。
    在这里插入图片描述
    在这里插入图片描述
  • 作者提出可以用2个连续的3x3卷积层(stride= 1)组成的小网络来代替单个的5x5卷积层,这便是Inception V2结构。
  • 5x5卷积核参数是3x3卷积核的25/9=2.78倍。
    在这里插入图片描述
    InceptionV2
  • 此外,作者将 n * n的卷积核尺寸分解为 1 * n 和 n * 1 两个卷积
    在这里插入图片描述
  • 并联比串联计算效率要高
  • 前面三个原则用来构建三种不同类型的 Inception 模块
    在这里插入图片描述

InceptionV3-网络结构图

  • InceptionV3整合了前面Inception v2中提到的所有升级,还使用了7x7卷积
    在这里插入图片描述
  • 目前,InceptionV3是最常用的网络模型

Inception V3设计思想和Trick:
(1) 分解成小卷积很有效,可以降低参数量,减轻过拟合,增加网络非线性的表达能力。
(2) 卷积网络从输入到输出,应该让图片尺寸逐渐减小,输出通道数逐渐增加,即让空间结
构化,将空间信息转化为高阶抽象的特征信息。
(3) InceptionModule用多个分支提取不同抽象程度的高阶特征的思路很有效,可以丰富网络
的表达能力

InceptionV4
在这里插入图片描述

  1. 左图是基本的Inception v2/v3模块,使用两个3x3卷积代替5x5卷积,并且使用average pooling,该模
    块主要处理尺寸为35x35的feature map;
  2. 中图模块使用1xn和nx1卷积代替nxn卷积,同样使用average pooling,该模块主要处理尺寸为17x17
    的feature map;
  3. 右图将3x3卷积用1x3卷积和3x1卷积代替。

总的来说,Inception v4中基本的Inception module还是沿袭了Inception v2/v3的结构,只是结构看起来更加简洁统一,并且使用更多的Inception modules实验效果也更好。
在这里插入图片描述
Inception模型优势:

  • 采用了1x1卷积核,性价比高,用很少的计算量既可以增加一层的特征变换和非线性变换。
  • 提出Batch Normalization,通过一定的手段,把每层神经元的输入值分布拉到均值0方差1的正态分布,使其落入激活函数的敏感区,避免梯度消失,加快收敛。
  • 引入Inception module, 4个分支结合的结构。
    卷积神经网络迁移学习
  • 现在在工程中最为常用的还是vgg、 resnet、 inception这几种结构, 设计者通常会先直接套用原版的模型对数据进行训练一次,然后选择效果较为好的模型进行微调与模型缩减。
  • 工程上使用的模型必须在精度高的同时速度要快。
  • 常用的模型缩减的方法是减少卷积的个数与减少resnet的模块数。

InceptionV3代码实现

第一个示例参考文章:

原文链接:GoogLeNet InceptionV3代码复现+超详细注释(PyTorch)
感谢大佬!

第一步:定义基础卷积模块

BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  • 1

作用:卷积层之后总会添加BatchNorm2d进行数据的归一化处理,这使得数据在进行Relu之前不会因为数据过大而导致网络性能的不稳定

  1. num_features:一般输入参数的shape为batch_size * num_features * height*width,即为其中特征的数量,即为输入BN层的通道数;
  2. eps:分母中添加的一个值,目的是为了计算的稳定性,默认为:1e-5,避免分母为0;
  3. momentum:一个用于运行过程中均值和方差的一个估计参数(可以理解是一个稳定系数,类似于SGD中的momentum的系数);
  4. affine:当设为true时,会给定可以学习的系数矩阵gamma和beta
class BasicConv2d(nn.Module):
 
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
       
    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

第二步:定义Inceptionv3模块

PyTorch提供的有六种基本的Inception模块,分别是InceptionA——InceptionE。

InceptionA

InceptionA
得到输入大小不变,通道数为224+pool_features的特征图。

假如输入为(35, 35, 192)的数据:

第一个branch:
经过branch1x1为带有64个11的卷积核,所以生成第一张特征图(35, 35, 64);
第二个branch:
首先经过branch5x5_1为带有48个1
1的卷积核,所以第二张特征图(35, 35, 48),
然后经过branch5x5_2为带有64个55大小且填充为2的卷积核,特征图大小依旧不变,因此第二张特征图最终为(35, 35, 64);
第三个branch:
首先经过branch3x3dbl_1为带有64个1
1的卷积核,所以第三张特征图(35, 35, 64),
然后经过branch3x3dbl_2为带有96个33大小且填充为1的卷积核,特征图大小依旧不变,因此进一步生成第三张特征图(35, 35, 96),
最后经过branch3x3dbl_3为带有96个3
3大小且填充为1的卷积核,特征图大小和通道数不变,因此第三张特征图最终为(35, 35, 96);
第四个branch:
首先经过avg_pool2d,其中池化核33,步长为1,填充为1,所以第四张特征图大小不变,通道数不变,第四张特征图为(35, 35, 192),
然后经过branch_pool为带有pool_features个的1
1卷积,因此第四张特征图最终为(35, 35, pool_features);
最后将四张特征图进行拼接,最终得到(35,35,64+64+96+pool_features)的特征图。

'''---InceptionA---'''
class InceptionA(nn.Module):
 
    def __init__(self, in_channels, pool_features, conv_block=None):
        super(InceptionA, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1x1 = conv_block(in_channels, 64, kernel_size=1)
 
        self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1)
        self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2)
 
        self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1)
 
        self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1)
 
    def _forward(self, x):
        branch1x1 = self.branch1x1(x)
 
        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)
 
        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
 
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
 
        outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
        return outputs
 
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
InceptionB

InceptionB
得到输入大小减半,通道数为480的特征图,

假如输入为(35, 35, 288)的数据:

第一个branch:
经过branch1x1为带有384个33大小且步长2的卷积核,(35-3+20)/2+1=17所以生成第一张特征图(17, 17, 384);
第二个branch:
首先经过branch3x3dbl_1为带有64个11的卷积核,特征图大小不变,即(35, 35, 64);
然后经过branch3x3dbl_2为带有96个3
3大小填充1的卷积核,特征图大小不变,即(35, 35, 96),
再经过branch3x3dbl_3为带有96个33大小步长2的卷积核,(35-3+20)/2+1=17,即第二张特征图为(17, 17, 96);
第三个branch:
经过max_pool2d,池化核大小3*3,步长为2,所以是二倍最大值下采样,通道数保持不变,第三张特征图为(17, 17, 288);
最后将三张特征图进行拼接,最终得到(17(即Hin/2),17(即Win/2),384+96+288(Cin)=768)的特征图。

'''---InceptionB---'''
class InceptionB(nn.Module):
 
    def __init__(self, in_channels, conv_block=None):
        super(InceptionB, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2)
 
        self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2)
 
    def _forward(self, x):
        branch3x3 = self.branch3x3(x)
 
        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
 
        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
 
        outputs = [branch3x3, branch3x3dbl, branch_pool]
        return outputs
 
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
InceptionC

InceptionC
得到输入大小不变,通道数为768的特征图。

假如输入为(17,17, 768)的数据:

第一个branch:
首先经过branch1x1为带有192个1*1的卷积核,所以生成第一张特征图(17,17, 192);

第二个branch:
首先经过branch7x7_1为带有c7个11的卷积核,所以第二张特征图(17,17, c7),
然后经过branch7x7_2为带有c7个1
7大小且填充为03的卷积核,特征图大小不变,进一步生成第二张特征图(17,17, c7),
然后经过branch7x7_3为带有192个7
1大小且填充为30的卷积核,特征图大小不变,进一步生成第二张特征图(17,17, 192),因此第二张特征图最终为(17,17, 192);
第三个branch:
首先经过branch7x7dbl_1为带有c7个1
1的卷积核,所以第三张特征图(17,17, c7),
然后经过branch7x7dbl_2为带有c7个71大小且填充为30的卷积核,特征图大小不变,进一步生成第三张特征图(17,17, c7),
然后经过branch7x7dbl_3为带有c7个17大小且填充为03的卷积核,特征图大小不变,进一步生成第三张特征图(17,17, c7),
然后经过branch7x7dbl_4为带有c7个71大小且填充为30的卷积核,特征图大小不变,进一步生成第三张特征图(17,17, c7),
然后经过branch7x7dbl_5为带有192个17大小且填充为03的卷积核,特征图大小不变,因此第二张特征图最终为(17,17, 192);
第四个branch:
首先经过avg_pool2d,其中池化核33,步长为1,填充为1,所以第四张特征图大小不变,通道数不变,第四张特征图为(17,17, 768),
然后经过branch_pool为带有192个的1
1卷积,因此第四张特征图最终为(17,17, 192);
最后将四张特征图进行拼接,最终得到(17, 17, 192+192+192+192=768)的特征图。

'''---InceptionC---'''
class InceptionC(nn.Module):
 
    def __init__(self, in_channels, channels_7x7, conv_block=None):
        super(InceptionC, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1x1 = conv_block(in_channels, 192, kernel_size=1)
 
        c7 = channels_7x7
        self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1)
        self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0))
 
        self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1)
        self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3))
 
        self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
 
    def _forward(self, x):
        branch1x1 = self.branch1x1(x)
 
        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)
 
        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
 
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
 
        outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
        return outputs
 
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
InceptionD

InceptionD
得到输入大小减半,通道数512的特征图,

假如输入为(17, 17, 768)的数据:

第一个branch:
首先经过branch3x3_1为带有192个11的卷积核,所以生成第一张特征图(17, 17, 192);
然后经过branch3x3_2为带有320个3
3大小步长为2的卷积核,(17-3+20)/2+1=8,最终第一张特征图(8, 8, 320);
第二个branch:
首先经过branch7x7x3_1为带有192个1
1的卷积核,特征图大小不变,即(17, 17, 192);
然后经过branch7x7x3_2为带有192个17大小且填充为03的卷积核,特征图大小不变,进一步生成第三张特征图(17,17, 192);
再经过branch7x7x3_3为带有192个71大小且填充为30的卷积核,特征图大小不变,进一步生成第三张特征图(17,17, 192);
最后经过branch7x7x3_4为带有192个3*3大小步长为2的卷积核,最终第一张特征图(8, 8, 192);
第三个branch:

首先经过max_pool2d,池化核大小3*3,步长为2,所以是二倍最大值下采样,通道数保持不变,第三张特征图为(8, 8, 768);
最后将三张特征图进行拼接,最终得到(8(即Hin/2),8(即Win/2),320+192+768(Cin)=1280)的特征图。

'''---InceptionD---'''
class InceptionD(nn.Module):
 
    def __init__(self, in_channels, conv_block=None):
        super(InceptionD, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1)
        self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2)
 
        self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1)
        self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2)
 
    def _forward(self, x):
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
 
        branch7x7x3 = self.branch7x7x3_1(x)
        branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_4(branch7x7x3)
 
        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
        outputs = [branch3x3, branch7x7x3, branch_pool]
        return outputs
 
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
InceptionE

InceptionE
最终得到输入大小不变,通道数为2048的特征图。

假如输入为(8,8, 1280)的数据:

第一个branch:
首先经过branch1x1为带有320个11的卷积核,所以生成第一张特征图(8, 8, 320);
第二个branch:
首先经过branch3x3_1为带有384个1
1的卷积核,所以第二张特征图(8, 8, 384),
经过分支branch3x3_2a为带有384个13大小且填充为01的卷积核,特征图大小不变,进一步生成特征图(8,8, 384),
经过分支branch3x3_2b为带有192个31大小且填充为10的卷积核,特征图大小不变,进一步生成特征图(8,8, 384),
因此第二张特征图最终为两个分支拼接(8,8, 384+384=768);
第三个branch:
首先经过branch3x3dbl_1为带有448个11的卷积核,所以第三张特征图(8,8, 448),
然后经过branch3x3dbl_2为带有384个3
3大小且填充为1的卷积核,特征图大小不变,进一步生成第三张特征图(8,8, 384),
经过分支branch3x3dbl_3a为带有384个13大小且填充为01的卷积核,特征图大小不变,进一步生成特征图(8,8, 384),
经过分支branch3x3dbl_3b为带有384个31大小且填充为10的卷积核,特征图大小不变,进一步生成特征图(8,8, 384),
因此第三张特征图最终为两个分支拼接(8,8, 384+384=768);
第四个branch:
首先经过avg_pool2d,其中池化核33,步长为1,填充为1,所以第四张特征图大小不变,通道数不变,第四张特征图为(8,8, 1280),
然后经过branch_pool为带有192个的1
1卷积,因此第四张特征图最终为(8,8, 192);
最后将四张特征图进行拼接,最终得到(8, 8, 320+768+768+192=2048)的特征图。

'''---InceptionE---'''
class InceptionE(nn.Module):
 
    def __init__(self, in_channels, conv_block=None):
        super(InceptionE, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1x1 = conv_block(in_channels, 320, kernel_size=1)
 
        self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1)
        self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
        self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))
 
        self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1)
        self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
        self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))
 
        self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
 
    def _forward(self, x):
        branch1x1 = self.branch1x1(x)
 
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = torch.cat(branch3x3, 1)
 
        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = torch.cat(branch3x3dbl, 1)
 
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
 
        outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
        return outputs
 
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

第三步:定义辅助分类器InceptionAux

辅助分类器

class InceptionAux(nn.Module):
 
    def __init__(self, in_channels, num_classes, conv_block=None):
        super(InceptionAux, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.conv0 = conv_block(in_channels, 128, kernel_size=1)
        self.conv1 = conv_block(128, 768, kernel_size=5)
        self.conv1.stddev = 0.01
        self.fc = nn.Linear(768, num_classes)
        self.fc.stddev = 0.001
 
    def forward(self, x):
        # N x 768 x 17 x 17
        x = F.avg_pool2d(x, kernel_size=5, stride=3)
        # N x 768 x 5 x 5
        x = self.conv0(x)
        # N x 128 x 5 x 5
        x = self.conv1(x)
        # N x 768 x 1 x 1
        # Adaptive average pooling
        x = F.adaptive_avg_pool2d(x, (1, 1))
        # N x 768 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 768
        x = self.fc(x)
        # N x 1000
        return x
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

第四步:搭建GoogLeNet网络

'''-----------------------搭建GoogLeNet网络--------------------------'''
class GoogLeNet(nn.Module):
 
    def __init__(self, num_classes=1000, aux_logits=True, transform_input=False,
                 inception_blocks=None):
        super(GoogLeNet, self).__init__()
        if inception_blocks is None:
            inception_blocks = [
                BasicConv2d, InceptionA, InceptionB, InceptionC,
                InceptionD, InceptionE, InceptionAux
            ]
        assert len(inception_blocks) == 7
        conv_block = inception_blocks[0]
        inception_a = inception_blocks[1]
        inception_b = inception_blocks[2]
        inception_c = inception_blocks[3]
        inception_d = inception_blocks[4]
        inception_e = inception_blocks[5]
        inception_aux = inception_blocks[6]
 
        self.aux_logits = aux_logits
        self.transform_input = transform_input
        self.Conv2d_1a_3x3 = conv_block(3, 32, kernel_size=3, stride=2)
        self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3)
        self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1)
        self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1)
        self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3)
        self.Mixed_5b = inception_a(192, pool_features=32)
        self.Mixed_5c = inception_a(256, pool_features=64)
        self.Mixed_5d = inception_a(288, pool_features=64)
        self.Mixed_6a = inception_b(288)
        self.Mixed_6b = inception_c(768, channels_7x7=128)
        self.Mixed_6c = inception_c(768, channels_7x7=160)
        self.Mixed_6d = inception_c(768, channels_7x7=160)
        self.Mixed_6e = inception_c(768, channels_7x7=192)
        if aux_logits:
            self.AuxLogits = inception_aux(768, num_classes)
        self.Mixed_7a = inception_d(768)
        self.Mixed_7b = inception_e(1280)
        self.Mixed_7c = inception_e(2048)
        self.fc = nn.Linear(2048, num_classes)
'''输入(229,229,3)的数据,首先归一化输入,经过5个卷积,2个最大池化层。'''
    def _forward(self, x):
        # N x 3 x 299 x 299
        x = self.Conv2d_1a_3x3(x)
        # N x 32 x 149 x 149
        x = self.Conv2d_2a_3x3(x)
        # N x 32 x 147 x 147
        x = self.Conv2d_2b_3x3(x)
        # N x 64 x 147 x 147
        x = F.max_pool2d(x, kernel_size=3, stride=2)
        # N x 64 x 73 x 73
        x = self.Conv2d_3b_1x1(x)
        # N x 80 x 73 x 73
        x = self.Conv2d_4a_3x3(x)
        # N x 192 x 71 x 71
        x = F.max_pool2d(x, kernel_size=3, stride=2)
        '''然后经过3个InceptionA结构,
        1个InceptionB,3个InceptionC,1个InceptionD,2个InceptionE,
        其中InceptionA,辅助分类器AuxLogits以经过最后一个InceptionC的输出为输入。'''
        # 35 x 35 x 192
        x = self.Mixed_5b(x)  # InceptionA(192, pool_features=32)
        # 35 x 35 x 256
        x = self.Mixed_5c(x)  # InceptionA(256, pool_features=64)
        # 35 x 35 x 288
        x = self.Mixed_5d(x)  # InceptionA(288, pool_features=64)
        # 35 x 35 x 288
        x = self.Mixed_6a(x)  # InceptionB(288)
        # 17 x 17 x 768
        x = self.Mixed_6b(x)  # InceptionC(768, channels_7x7=128)
        # 17 x 17 x 768
        x = self.Mixed_6c(x)  # InceptionC(768, channels_7x7=160)
        # 17 x 17 x 768
        x = self.Mixed_6d(x)  # InceptionC(768, channels_7x7=160)
        # 17 x 17 x 768
        x = self.Mixed_6e(x)  # InceptionC(768, channels_7x7=192)
        # 17 x 17 x 768
        if self.training and self.aux_logits:
            aux = self.AuxLogits(x)  # InceptionAux(768, num_classes)
        # 17 x 17 x 768
        x = self.Mixed_7a(x)  # InceptionD(768)
        # 8 x 8 x 1280
        x = self.Mixed_7b(x)  # InceptionE(1280)
        # 8 x 8 x 2048
        x = self.Mixed_7c(x)  # InceptionE(2048)
 
        '''进入分类部分。
        经过平均池化层+dropout+打平+全连接层输出'''
        x = F.adaptive_avg_pool2d(x, (1, 1))
        # N x 2048 x 1 x 1
        x = F.dropout(x, training=self.training)
        # N x 2048 x 1 x 1
        x = torch.flatten(x, 1)#Flatten()就是将2D的特征图压扁为1D的特征向量,是展平操作,进入全连接层之前使用,类才能写进nn.Sequential
        # N x 2048
        x = self.fc(x)
        # N x 1000 (num_classes)
        return x, aux
 
    def forward(self, x):
        x, aux = self._forward(x)
        return x, aux
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101

第五步*:网络结构参数初始化

    '''-----------------------网络结构参数初始化--------------------------'''
 
    # 目的:使网络更好收敛,准确率更高
    def _initialize_weights(self):  # 将各种初始化方法定义为一个initialize_weights()的函数并在模型初始后进行使用。
 
        # 遍历网络中的每一层
        for m in self.modules():
            # isinstance(object, type),如果指定的对象拥有指定的类型,则isinstance()函数返回True
 
            '''如果是卷积层Conv2d'''
            if isinstance(m, nn.Conv2d):
                # Kaiming正态分布方式的权重初始化
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
 
                '''判断是否有偏置:'''
                # 如果偏置不是0,将偏置置成0,对偏置进行初始化
                if m.bias is not None:
                    # torch.nn.init.constant_(tensor, val),初始化整个矩阵为常数val
                    nn.init.constant_(m.bias, 0)
 
                '''如果是全连接层'''
            elif isinstance(m, nn.Linear):
                # init.normal_(tensor, mean=0.0, std=1.0),使用从正态分布中提取的值填充输入张量
                # 参数:tensor:一个n维Tensor,mean:正态分布的平均值,std:正态分布的标准差
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

完整代码

from __future__ import division
 
import torch
import torch.nn as nn
import torch.nn.functional as F
 
'''-------------------------第一步:定义基础卷积模块-------------------------------'''
class BasicConv2d(nn.Module):
 
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
 
    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)
 
 
    '''-----------------第二步:定义Inceptionv3模块---------------------'''
 
'''---InceptionA---'''
class InceptionA(nn.Module):
 
    def __init__(self, in_channels, pool_features, conv_block=None):
        super(InceptionA, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1x1 = conv_block(in_channels, 64, kernel_size=1)
 
        self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1)
        self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2)
 
        self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1)
 
        self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1)
 
    def _forward(self, x):
        branch1x1 = self.branch1x1(x)
 
        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)
 
        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
 
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
 
        outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
        return outputs
 
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)
 
'''---InceptionB---'''
class InceptionB(nn.Module):
 
    def __init__(self, in_channels, conv_block=None):
        super(InceptionB, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2)
 
        self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2)
 
    def _forward(self, x):
        branch3x3 = self.branch3x3(x)
 
        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
 
        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
 
        outputs = [branch3x3, branch3x3dbl, branch_pool]
        return outputs
 
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)
 
'''---InceptionC---'''
class InceptionC(nn.Module):
 
    def __init__(self, in_channels, channels_7x7, conv_block=None):
        super(InceptionC, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1x1 = conv_block(in_channels, 192, kernel_size=1)
 
        c7 = channels_7x7
        self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1)
        self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0))
 
        self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1)
        self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3))
 
        self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
 
    def _forward(self, x):
        branch1x1 = self.branch1x1(x)
 
        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)
 
        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
 
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
 
        outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
        return outputs
 
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)
 
'''---InceptionD---'''
class InceptionD(nn.Module):
 
    def __init__(self, in_channels, conv_block=None):
        super(InceptionD, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1)
        self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2)
 
        self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1)
        self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2)
 
    def _forward(self, x):
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
 
        branch7x7x3 = self.branch7x7x3_1(x)
        branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_4(branch7x7x3)
 
        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
        outputs = [branch3x3, branch7x7x3, branch_pool]
        return outputs
 
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)
 
'''---InceptionE---'''
class InceptionE(nn.Module):
 
    def __init__(self, in_channels, conv_block=None):
        super(InceptionE, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1x1 = conv_block(in_channels, 320, kernel_size=1)
 
        self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1)
        self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
        self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))
 
        self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1)
        self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
        self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))
 
        self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
 
    def _forward(self, x):
        branch1x1 = self.branch1x1(x)
 
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = torch.cat(branch3x3, 1)
 
        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = torch.cat(branch3x3dbl, 1)
 
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
 
        outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
        return outputs
 
    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)
 
 
 
'''-------------------第三步:定义辅助分类器InceptionAux-----------------------'''
class InceptionAux(nn.Module):
 
    def __init__(self, in_channels, num_classes, conv_block=None):
        super(InceptionAux, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.conv0 = conv_block(in_channels, 128, kernel_size=1)
        self.conv1 = conv_block(128, 768, kernel_size=5)
        self.conv1.stddev = 0.01
        self.fc = nn.Linear(768, num_classes)
        self.fc.stddev = 0.001
 
    def forward(self, x):
        # N x 768 x 17 x 17
        x = F.avg_pool2d(x, kernel_size=5, stride=3)
        # N x 768 x 5 x 5
        x = self.conv0(x)
        # N x 128 x 5 x 5
        x = self.conv1(x)
        # N x 768 x 1 x 1
        # Adaptive average pooling
        x = F.adaptive_avg_pool2d(x, (1, 1))
        # N x 768 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 768
        x = self.fc(x)
        # N x 1000
        return x
 
'''-----------------------第四步:搭建GoogLeNet网络--------------------------'''
class GoogLeNet(nn.Module):
 
    def __init__(self, num_classes=1000, aux_logits=True, transform_input=False,
                 inception_blocks=None):
        super(GoogLeNet, self).__init__()
        if inception_blocks is None:
            inception_blocks = [
                BasicConv2d, InceptionA, InceptionB, InceptionC,
                InceptionD, InceptionE, InceptionAux
            ]
        assert len(inception_blocks) == 7
        conv_block = inception_blocks[0]
        inception_a = inception_blocks[1]
        inception_b = inception_blocks[2]
        inception_c = inception_blocks[3]
        inception_d = inception_blocks[4]
        inception_e = inception_blocks[5]
        inception_aux = inception_blocks[6]
 
        self.aux_logits = aux_logits
        self.transform_input = transform_input
        self.Conv2d_1a_3x3 = conv_block(3, 32, kernel_size=3, stride=2)
        self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3)
        self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1)
        self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1)
        self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3)
        self.Mixed_5b = inception_a(192, pool_features=32)
        self.Mixed_5c = inception_a(256, pool_features=64)
        self.Mixed_5d = inception_a(288, pool_features=64)
        self.Mixed_6a = inception_b(288)
        self.Mixed_6b = inception_c(768, channels_7x7=128)
        self.Mixed_6c = inception_c(768, channels_7x7=160)
        self.Mixed_6d = inception_c(768, channels_7x7=160)
        self.Mixed_6e = inception_c(768, channels_7x7=192)
        if aux_logits:
            self.AuxLogits = inception_aux(768, num_classes)
        self.Mixed_7a = inception_d(768)
        self.Mixed_7b = inception_e(1280)
        self.Mixed_7c = inception_e(2048)
        self.fc = nn.Linear(2048, num_classes)
    '''输入(229,229,3)的数据,首先归一化输入,经过5个卷积,2个最大池化层。'''
    def _forward(self, x):
        # N x 3 x 299 x 299
        x = self.Conv2d_1a_3x3(x)
        # N x 32 x 149 x 149
        x = self.Conv2d_2a_3x3(x)
        # N x 32 x 147 x 147
        x = self.Conv2d_2b_3x3(x)
        # N x 64 x 147 x 147
        x = F.max_pool2d(x, kernel_size=3, stride=2)
        # N x 64 x 73 x 73
        x = self.Conv2d_3b_1x1(x)
        # N x 80 x 73 x 73
        x = self.Conv2d_4a_3x3(x)
        # N x 192 x 71 x 71
        x = F.max_pool2d(x, kernel_size=3, stride=2)
        '''然后经过3个InceptionA结构,
        1个InceptionB,3个InceptionC,1个InceptionD,2个InceptionE,
        其中InceptionA,辅助分类器AuxLogits以经过最后一个InceptionC的输出为输入。'''
        # 35 x 35 x 192
        x = self.Mixed_5b(x)  # InceptionA(192, pool_features=32)
        # 35 x 35 x 256
        x = self.Mixed_5c(x)  # InceptionA(256, pool_features=64)
        # 35 x 35 x 288
        x = self.Mixed_5d(x)  # InceptionA(288, pool_features=64)
        # 35 x 35 x 288
        x = self.Mixed_6a(x)  # InceptionB(288)
        # 17 x 17 x 768
        x = self.Mixed_6b(x)  # InceptionC(768, channels_7x7=128)
        # 17 x 17 x 768
        x = self.Mixed_6c(x)  # InceptionC(768, channels_7x7=160)
        # 17 x 17 x 768
        x = self.Mixed_6d(x)  # InceptionC(768, channels_7x7=160)
        # 17 x 17 x 768
        x = self.Mixed_6e(x)  # InceptionC(768, channels_7x7=192)
        # 17 x 17 x 768
        if self.training and self.aux_logits:
            aux = self.AuxLogits(x)  # InceptionAux(768, num_classes)
        # 17 x 17 x 768
        x = self.Mixed_7a(x)  # InceptionD(768)
        # 8 x 8 x 1280
        x = self.Mixed_7b(x)  # InceptionE(1280)
        # 8 x 8 x 2048
        x = self.Mixed_7c(x)  # InceptionE(2048)
 
        '''进入分类部分。
        经过平均池化层+dropout+打平+全连接层输出'''
        x = F.adaptive_avg_pool2d(x, (1, 1))
        # N x 2048 x 1 x 1
        x = F.dropout(x, training=self.training)
        # N x 2048 x 1 x 1
        x = torch.flatten(x, 1)#Flatten()就是将2D的特征图压扁为1D的特征向量,是展平操作,进入全连接层之前使用,类才能写进nn.Sequential
        # N x 2048
        x = self.fc(x)
        # N x 1000 (num_classes)
        return x, aux
 
    def forward(self, x):
        x, aux = self._forward(x)
        return x, aux
    '''-----------------------第五步:网络结构参数初始化--------------------------'''
 
    # 目的:使网络更好收敛,准确率更高
    def _initialize_weights(self):  # 将各种初始化方法定义为一个initialize_weights()的函数并在模型初始后进行使用。
 
        # 遍历网络中的每一层
        for m in self.modules():
            # isinstance(object, type),如果指定的对象拥有指定的类型,则isinstance()函数返回True
 
            '''如果是卷积层Conv2d'''
            if isinstance(m, nn.Conv2d):
                # Kaiming正态分布方式的权重初始化
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
 
                '''判断是否有偏置:'''
                # 如果偏置不是0,将偏置置成0,对偏置进行初始化
                if m.bias is not None:
                    # torch.nn.init.constant_(tensor, val),初始化整个矩阵为常数val
                    nn.init.constant_(m.bias, 0)
 
                '''如果是全连接层'''
            elif isinstance(m, nn.Linear):
                # init.normal_(tensor, mean=0.0, std=1.0),使用从正态分布中提取的值填充输入张量
                # 参数:tensor:一个n维Tensor,mean:正态分布的平均值,std:正态分布的标准差
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)
'''---------------------------------------显示网络结构-------------------------------'''
if __name__ == '__main__':
    net = GoogLeNet(1000).cuda()
    from torchsummary import summary
 
    summary(net, (3, 299, 299))
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380

论文复现代码

上面实现的是torchvision中的Inception v3结构,和论文中不太一样。
GITHUB论文复现代码链接

论文中结构

论文中结构

代码
import torch
import torch.nn as nn
from functools import partial
# functools.partial():减少某个函数的参数个数。 partial() 函数允许你给一个或多个参数设置固定的值,减少接下来被调用时的参数个数
 
'''-----------------------第一步:定义卷积模块-----------------------'''
#基础卷积模块
class Conv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output=False):
        super(Conv2d, self).__init__()
        '''卷积层'''
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
        '''输出层'''
        self.output = output
        if self.output == False:
            '''bn层'''
            self.bn = nn.BatchNorm2d(out_channels)
   
            '''relu层'''
            self.relu = nn.ReLU(inplace=True)
 
    def forward(self, x):
        x = self.conv(x)
        if self.output:
            return x
        else:
            x = self.bn(x)
            x = self.relu(x)
            return x
 
class Separable_Conv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
        super(Separable_Conv2d, self).__init__()
        self.conv_h = nn.Conv2d(in_channels, in_channels, (kernel_size, 1), stride=(stride, 1), padding=(padding, 0))
        self.conv_w = nn.Conv2d(in_channels, out_channels, (1, kernel_size), stride=(1, stride), padding=(0, padding))
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
 
    def forward(self, x):
        x = self.conv_h(x)
        x = self.conv_w(x)
        x = self.bn(x)
        x = self.relu(x)
        return x
 
 
class Concat_Separable_Conv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
        super(Concat_Separable_Conv2d, self).__init__()
        self.conv_h = nn.Conv2d(in_channels, out_channels, (kernel_size, 1), stride=(stride, 1), padding=(padding, 0))
        self.conv_w = nn.Conv2d(in_channels, out_channels, (1, kernel_size), stride=(1, stride), padding=(0, padding))
        self.bn = nn.BatchNorm2d(out_channels * 2)
        self.relu = nn.ReLU(inplace=True)
 
    def forward(self, x):
        x_h = self.conv_h(x)
        x_w = self.conv_w(x)
        x = torch.cat([x_h, x_w], dim=1)
        x = self.bn(x)
        x = self.relu(x)
        return x
 
 
#Flatten()就是将2D的特征图压扁为1D的特征向量,是展平操作,进入全连接层之前使用,类才能写进nn.Sequential
class Flatten(nn.Module):
    # 传入输入维度和输出维度
    def __init__(self):
        # 调用父类构造函数
        super(Flatten, self).__init__()
 
    # 实现forward函数
    def forward(self, x):
        # 保存batch维度,后面的维度全部压平
        return torch.flatten(x, 1)
 
#Squeeze()降维
class Squeeze(nn.Module):
    def __init__(self):
        super(Squeeze, self).__init__()
 
    def forward(self, x):
        return torch.squeeze(x)
 
'''-----------------------搭建GoogLeNet网络--------------------------'''
class GoogLeNet(nn.Module):
    def __init__(self, num_classes, mode='train'):
        super(GoogLeNet, self).__init__()
        self.num_classes = num_classes
        self.mode = mode
        self.layers = nn.Sequential(
            Conv2d(3, 32, 3, stride=2),
            Conv2d(32, 32, 3, stride=1),
            Conv2d(32, 64, 3, stride=1, padding=1),
            nn.MaxPool2d(kernel_size=3, stride=2),
            Conv2d(64, 80, kernel_size=3),
            Conv2d(80, 192, kernel_size=3, stride=2),
            Conv2d(192, 288, kernel_size=3, stride=1, padding=1),
            #输入:35*35*288。将5*5用两个3*3代替
            Inceptionv3(288, 64, 48, 64, 64, 96, 64, mode='1'),  # 3a
            Inceptionv3(288, 64, 48, 64, 64, 96, 64, mode='1'),  # 3b
            Inceptionv3(288, 0, 128, 384, 64, 96, 0, stride=2, pool_type='MAX', mode='1'),  # 3c
            #输入:17*17*768。
            Inceptionv3(768, 192, 128, 192, 128, 192, 192, mode='2'),  # 4a
            Inceptionv3(768, 192, 160, 192, 160, 192, 192, mode='2'),  # 4b
            Inceptionv3(768, 192, 160, 192, 160, 192, 192, mode='2'),  # 4c
            Inceptionv3(768, 192, 192, 192, 192, 192, 192, mode='2'),  # 4d
            Inceptionv3(768, 0, 192, 320, 192, 192, 0, stride=2, pool_type='MAX', mode='2'),  # 4e
            #8*8*1280
            Inceptionv3(1280, 320, 384, 384, 448, 384, 192, mode='3'),  # 5a
            Inceptionv3(2048, 320, 384, 384, 448, 384, 192, pool_type='MAX', mode='3'),  # 5b
            nn.AvgPool2d(8, 1),
            Conv2d(2048, num_classes, kernel_size=1, output=True),
            Squeeze(),
        )
        if mode == 'train':
            self.aux = InceptionAux(768, num_classes)
 
    def forward(self, x):
        for idx, layer in enumerate(self.layers):
            if (idx == 14 and self.mode == 'train'):
                aux = self.aux(x)
            x = layer(x)
        if self.mode == 'train':
            return x, aux
        else:
            return x
 
    '''-----------------------网络结构参数初始化--------------------------'''
 
    # 目的:使网络更好收敛,准确率更高
    def _initialize_weights(self):  # 将各种初始化方法定义为一个initialize_weights()的函数并在模型初始后进行使用。
 
        # 遍历网络中的每一层
        for m in self.modules():
            # isinstance(object, type),如果指定的对象拥有指定的类型,则isinstance()函数返回True
 
            '''如果是卷积层Conv2d'''
            if isinstance(m, nn.Conv2d):
                # Kaiming正态分布方式的权重初始化
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
 
                '''判断是否有偏置:'''
                # 如果偏置不是0,将偏置置成0,对偏置进行初始化
                if m.bias is not None:
                    # torch.nn.init.constant_(tensor, val),初始化整个矩阵为常数val
                    nn.init.constant_(m.bias, 0)
 
                '''如果是全连接层'''
            elif isinstance(m, nn.Linear):
                # init.normal_(tensor, mean=0.0, std=1.0),使用从正态分布中提取的值填充输入张量
                # 参数:tensor:一个n维Tensor,mean:正态分布的平均值,std:正态分布的标准差
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)
 
'''---------------------Inceptionv3-------------------------------------'''
'''
Inceptionv3由三个连续的Inception模块组组成
'''
class Inceptionv3(nn.Module):
    def __init__(self, input_channel, conv1_channel, conv3_reduce_channel,
                 conv3_channel, conv3_double_reduce_channel, conv3_double_channel, pool_reduce_channel, stride=1,
                 pool_type='AVG', mode='1'):
 
        super(Inceptionv3, self).__init__()
        self.stride = stride
 
        if stride == 2:
            padding_conv3 = 0
            padding_conv7 = 2
        else:
            padding_conv3 = 1
            padding_conv7 = 3
        if conv1_channel != 0:
            self.conv1 = Conv2d(input_channel, conv1_channel, kernel_size=1)
        else:
            self.conv1 = None
        self.conv3_reduce = Conv2d(input_channel, conv3_reduce_channel, kernel_size=1)
        #第一种Inception模式:输入的特征图尺寸为35x35x288,采用了论文中图5中的架构,将5x5以两个3x3代替。
        if mode == '1':
            self.conv3 = Conv2d(conv3_reduce_channel, conv3_channel, kernel_size=3, stride=stride,
                                padding=padding_conv3)
            self.conv3_double1 = Conv2d(conv3_double_reduce_channel, conv3_double_channel, kernel_size=3, padding=1)
            self.conv3_double2 = Conv2d(conv3_double_channel, conv3_double_channel, kernel_size=3, stride=stride,
                                        padding=padding_conv3)
 
        #第二种Inception模块:输入特征图尺寸为17x17x768,采用了论文中图6中nx1+1xn的不对称卷积结构
        elif mode == '2':
            self.conv3 = Separable_Conv2d(conv3_reduce_channel, conv3_channel, kernel_size=7, stride=stride,
                                          padding=padding_conv7)
            self.conv3_double1 = Separable_Conv2d(conv3_double_reduce_channel, conv3_double_channel, kernel_size=7,
                                                  padding=3)
            self.conv3_double2 = Separable_Conv2d(conv3_double_channel, conv3_double_channel, kernel_size=7,
                                                  stride=stride, padding=padding_conv7)
 
        #第三种Inception模块:输入特征图尺寸为8x8x1280, 采用了论文图7中所示的并行模块的结构
        elif mode == '3':
            self.conv3 = Concat_Separable_Conv2d(conv3_reduce_channel, conv3_channel, kernel_size=3, stride=stride,
                                                 padding=1)
            self.conv3_double1 = Conv2d(conv3_double_reduce_channel, conv3_double_channel, kernel_size=3, padding=1)
            self.conv3_double2 = Concat_Separable_Conv2d(conv3_double_channel, conv3_double_channel, kernel_size=3,
                                                         stride=stride, padding=1)
 
        self.conv3_double_reduce = Conv2d(input_channel, conv3_double_reduce_channel, kernel_size=1)
        if pool_type == 'MAX':
            self.pool = nn.MaxPool2d(kernel_size=3, stride=stride, padding=padding_conv3)
        elif pool_type == 'AVG':
            self.pool = nn.AvgPool2d(kernel_size=3, stride=stride, padding=padding_conv3)
        if pool_reduce_channel != 0:
            self.pool_reduce = Conv2d(input_channel, pool_reduce_channel, kernel_size=1)
        else:
            self.pool_reduce = None
 
    def forward(self, x):
 
        output_conv3 = self.conv3(self.conv3_reduce(x))
        output_conv3_double = self.conv3_double2(self.conv3_double1(self.conv3_double_reduce(x)))
        if self.pool_reduce != None:
            output_pool = self.pool_reduce(self.pool(x))
        else:
            output_pool = self.pool(x)
 
        if self.conv1 != None:
            output_conv1 = self.conv1(x)
            outputs = torch.cat([output_conv1, output_conv3, output_conv3_double, output_pool], dim=1)
        else:
            outputs = torch.cat([output_conv3, output_conv3_double, output_pool], dim=1)
        return outputs
 
'''------------辅助分类器---------------------------'''
class InceptionAux(nn.Module):
    def __init__(self, input_channel, num_classes):
        super(InceptionAux, self).__init__()
        self.layers = nn.Sequential(
            nn.AvgPool2d(5, 3),
            Conv2d(input_channel, 128, 1),
            Conv2d(128, 1024, kernel_size=5),
            Conv2d(1024, num_classes, kernel_size=1, output=True),
            Squeeze()
        )
 
    def forward(self, x):
        x = self.layers(x)
        return x
 
'''-------------------显示网络结构-------------------------------'''
if __name__ == '__main__':
    net = GoogLeNet(1000).cuda()
    from torchsummary import summary
 
    summary(net, (3, 299, 299))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/运维做开发/article/detail/1012144
推荐阅读
相关标签
  

闽ICP备14008679号