当前位置:   article > 正文

深入解析高斯过程:数学理论、重要概念和直观可视化全解

深入解析高斯过程:数学理论、重要概念和直观可视化全解

与其他算法相比,高斯过程不那么流行,但是如果你只有少量的数据,那么可以首先高斯过程。在这篇文章中,我将详细介绍高斯过程。并可视化和Python实现来解释高斯过程的数学理论。

多元高斯分布

多元高斯分布是理解高斯过程所必须的概念之一。让我们快速回顾一下。如果你已经熟悉多元高斯分布,可以跳过这一部分。

多元高斯分布是具有两个以上维度的高斯分布的联合概率。多元高斯分布具有以下的概率密度函数。

x 是具有 D × 1 维度的输入数据,μ 是具有与 x 相同维度的均值向量,Σ 是具有 D × D 维度的协方差矩阵。

多元高斯分布具有以下重要特性:

  1. 多元高斯分布的边缘分布仍然遵循高斯分布。
  2. 多元高斯分布的条件分布仍然遵循高斯分布。

让我们通过可视化来检验这些概念。假设 D 维数据遵循高斯分布。对于特性1,当我们将输入数据维度 D 分为前 L 维和其余的 D-L=M 维时,我们可以如下描述高斯分布。

那么,当我们对x₁的分布进行边缘化时,x₁的概率分布可以写成:

根据公式(1),在进行边缘化时,我们可以取消其他变量。上图表展示了二维高斯分布的情况。边缘化分布映射到每个轴上;其形式是高斯分布。当我们根据一个轴切割多元高斯分布时,截面的分布仍然遵循高斯分布。

对于特征 2,我们使用相同的 D 维多元高斯分布和两部分划分的输入数据 x₁ 和 x₂。多元高斯分布的条件概率可以写为:

上图显示了二维高斯分布(等高线)和条件高斯分布(虚线)。在每种条件下,高斯分布的形状是不同的。

线性回归与维度诅咒

在深入研究高斯过程之前,首先需要说明线性回归模型的一个主要缺点。高斯过程与这一概念密切相关,并能克服这个缺点。

让我们回顾一下线性回归模型。线性回归模型可以使用基函数

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/运维做开发/article/detail/799250
推荐阅读
相关标签