当前位置:   article > 正文

Wakeup Source框架设计与实现

Wakeup Source框架设计与实现

Wakeup Source 为系统组件提供了投票机制,以便低功耗子系统判断当前是否可以进入休眠。

Wakeup Source(后简称:WS) 模块可与内核中的其他模块或者上层服务交互,并最终体现在对睡眠锁的控制上。

通用低功耗软件栈.png

1. 模块功能说明

WS的处理逻辑基本上是围绕 combined_event_count 变量展开的,这个变量高16位记录系统已处理的所有的唤醒事件总数,低16位记录在处理中的唤醒事件总数。每次持锁时,处理中的唤醒事件记录(低16位)会加1;每次释放锁时,处理中的唤醒事件记录(低16位)会减1,同时已处理的唤醒事件记录(高16位)会加1。

对于每次系统能否进入休眠,通过判断是否有正在处理中的唤醒事件(低16位)来决定。该模块实现主要的功能:

  • 持锁和释放锁

  • 注册和注销锁

  • 查询激活状态锁个数

2. 主要数据结构

2.1 wakeup_source 结构体

  1. @include/linux/pm_wakeup.h
  2. /**
  3. * struct wakeup_source - Representation of wakeup sources
  4. *
  5. * @name: Name of the wakeup source
  6. * @id: Wakeup source id
  7. * @entry: Wakeup source list entry
  8. * @lock: Wakeup source lock
  9. * @wakeirq: Optional device specific wakeirq
  10. * @timer: Wakeup timer list
  11. * @timer_expires: Wakeup timer expiration
  12. * @total_time: Total time this wakeup source has been active.
  13. * @max_time: Maximum time this wakeup source has been continuously active.
  14. * @last_time: Monotonic clock when the wakeup source's was touched last time.
  15. * @prevent_sleep_time: Total time this source has been preventing autosleep.
  16. * @event_count: Number of signaled wakeup events.
  17. * @active_count: Number of times the wakeup source was activated.
  18. * @relax_count: Number of times the wakeup source was deactivated.
  19. * @expire_count: Number of times the wakeup source's timeout has expired.
  20. * @wakeup_count: Number of times the wakeup source might abort suspend.
  21. * @dev: Struct device for sysfs statistics about the wakeup source.
  22. * @active: Status of the wakeup source.
  23. * @autosleep_enabled: Autosleep is active, so update @prevent_sleep_time.
  24. */
  25. struct wakeup_source {
  26. const char *name; //ws 名称
  27. int id; //WS系统给本ws分配的ID
  28. struct list_head entry; //用于把本ws节点维护到WS系统的全局链表中
  29. spinlock_t lock;
  30. struct wake_irq *wakeirq; //与本ws节点绑定的唤醒中断相关的结构体,用户可自行把指定中断与ws绑定
  31. struct timer_list timer; //超时锁使用,如定义本ws为超时锁,指定在一定时间后释放锁
  32. unsigned long timer_expires;//超时锁超时时间
  33. ktime_t total_time; //本ws激活的总时长
  34. ktime_t max_time; //在ws激活历史中,最长一次的激活时间
  35. ktime_t last_time; //最后一次访问本ws的时间
  36. ktime_t start_prevent_time; //本ws最近一次阻止autosleep进入休眠的时间戳
  37. ktime_t prevent_sleep_time; //因本ws导致的阻止autosleep进入休眠的总时间
  38. unsigned long event_count; //事件次数,本ws被持锁(不考虑是否已持锁),则加1并作记录
  39. unsigned long active_count;//激活次数,本ws仅在首次持锁(激活)时加1(已持锁则不加1,锁释放后再次持锁则加1
  40. unsigned long relax_count; //释放次数,与 active_count 相对
  41. unsigned long expire_count; //超时锁超时次数
  42. unsigned long wakeup_count; //与event_count一样,但受events_check_enabled 使能标记控制
  43. struct device *dev; //与本ws绑定的设备
  44. bool active:1; //标记是否处于激活状态
  45. bool autosleep_enabled:1; //标记是否使能autosleep
  46. };

2.2 核心变量

2.2.1 combined_event_count 变量

static atomic_t combined_event_count = ATOMIC_INIT(0);该变量是1个组合计数变量,高16位记录唤醒事件的总数,低16位记录正在处理中的唤醒事件的总数。系统根据低16位(正在处理中的唤醒事件)来判断是否可以进入休眠。

2.2.2 wakeup_sources 变量

static LIST_HEAD(wakeup_sources);所有通过调用 wakeup_source_register()注册的ws全部维护在此链表中,以便系统进行维护。

2.3 主要函数分析

Wakeup Source 对外提供的主要接口:

  • wakeup_source_register()wakeup_source_unregister()分别用于注册与注销一个ws

  • __pm_stay_awake()__pm_relax(),针对ws类型对象提供持锁与释放锁接口

  • (device_set_wakeup_capable()+device_wakeup_enable()/device_wakeup_disable()/device_set_wakeup_enable())/device_init_wakeup()给设备配置是否支持唤醒以及注册/注销ws的接口

  • pm_stay_awake()pm_relax(),针对device类型对象提供持锁与释放锁接口

2.3.1 wakeup_source_register()/wakeup_source_unregister() 接口

wakeup_source_register()函数为dev设备创建ws,并将创建的ws添加到全局链表wakeup_sources中,方便后续维护,并在sysfs系统中创建节点/sys/class/wakeup/wakeup<id>/,便于获取ws相关信息。

  1. @drivers/base/power/wakeup.c
  2. /**
  3. * wakeup_source_register - Create wakeup source and add it to the list.
  4. * @dev: Device this wakeup source is associated with (or NULL if virtual).
  5. * @name: Name of the wakeup source to register.
  6. */
  7. struct wakeup_source *wakeup_source_register(struct device *dev,
  8. const char *name)
  9. {
  10. struct wakeup_source *ws;
  11. int ret;
  12. ws = wakeup_source_create(name); //分配内存,设置ws的name和id
  13. if (ws) {
  14. if (!dev || device_is_registered(dev)) {
  15. //在sysfs下为该ws创建dev, /sys/class/wakeup/wakeup<id>/
  16. ret = wakeup_source_sysfs_add(dev, ws);
  17. if (ret) {
  18. wakeup_source_free(ws);
  19. return NULL;
  20. }
  21. }
  22. wakeup_source_add(ws); //设置超时回调函数并将ws添加到wakeup_sources链表
  23. }
  24. return ws;
  25. }
  26. @drivers/base/power/wakeup_stats.c
  27. static struct device *wakeup_source_device_create(struct device *parent,
  28. struct wakeup_source *ws)
  29. {
  30. struct device *dev = NULL;
  31. int retval = -ENODEV;
  32. dev = kzalloc(sizeof(*dev), GFP_KERNEL);
  33. device_initialize(dev);
  34. dev->devt = MKDEV(0, 0);
  35. dev->class = wakeup_class; //ws dev挂于wakeup类
  36. dev->parent = parent;
  37. dev->groups = wakeup_source_groups;
  38. dev->release = device_create_release;
  39. dev_set_drvdata(dev, ws);
  40. device_set_pm_not_required(dev);
  41. retval = kobject_set_name(&dev->kobj, "wakeup%d", ws->id);
  42. retval = device_add(dev);
  43. return dev;
  44. }
  45. //ws dev存在的属性: /sys/class/wakeup/wakeup<id>/
  46. static struct attribute *wakeup_source_attrs[] = {
  47. &dev_attr_name.attr, //RO, ws 名称
  48. &dev_attr_active_count.attr, //RO, 激活次数
  49. &dev_attr_event_count.attr, //RO, 持锁次数
  50. &dev_attr_wakeup_count.attr, //RO, 同event_count,但受events_check_enabled使能标记
  51. &dev_attr_expire_count.attr, //RO, 超时次数
  52. &dev_attr_active_time_ms.attr, //RO, 如当前处于激活状态,显示已激活时间
  53. &dev_attr_total_time_ms.attr, //RO, 总激活时间
  54. &dev_attr_max_time_ms.attr, //RO, 最长激活时间
  55. &dev_attr_last_change_ms.attr, //RO, 最近一次激活时的时间戳
  56. &dev_attr_prevent_suspend_time_ms.attr, //RO, 阻止autosleep进入休眠的总时间
  57. NULL,
  58. };
  59. ATTRIBUTE_GROUPS(wakeup_source);

wakeup_source_unregister() 接口删除了已注册的ws,移除了sysfs系统中的节点并释放占用的系统资源。

  1. @drivers/base/power/wakeup.c
  2. void wakeup_source_unregister(struct wakeup_source *ws)
  3. {
  4. if (ws) {
  5. wakeup_source_remove(ws); //从wakeup_sources队列移除并删除其定时器
  6. if (ws->dev)
  7. wakeup_source_sysfs_remove(ws);//移除该ws在sysfs系统中的信息
  8. wakeup_source_destroy(ws);
  9. }
  10. }
  11. void wakeup_source_destroy(struct wakeup_source *ws)
  12. {
  13. __pm_relax(ws); //释放该ws
  14. wakeup_source_record(ws);//如果该ws被持锁过,则将其记录叠加到deleted_ws这个ws上
  15. wakeup_source_free(ws);//释放内存资源
  16. }
  17. static struct wakeup_source deleted_ws = {//用于保存已移除ws的记录
  18. .name = "deleted",
  19. .lock = __SPIN_LOCK_UNLOCKED(deleted_ws.lock),
  20. };
  21. static void wakeup_source_record(struct wakeup_source *ws)
  22. {
  23. unsigned long flags;
  24. spin_lock_irqsave(&deleted_ws.lock, flags);
  25. if (ws->event_count) {//如果该ws被持锁过,则将记录都叠加到deleted_ws这个ws上
  26. deleted_ws.total_time =
  27. ktime_add(deleted_ws.total_time, ws->total_time);
  28. deleted_ws.prevent_sleep_time =
  29. ktime_add(deleted_ws.prevent_sleep_time,
  30. ws->prevent_sleep_time);
  31. deleted_ws.max_time =
  32. ktime_compare(deleted_ws.max_time, ws->max_time) > 0 ?
  33. deleted_ws.max_time : ws->max_time;
  34. deleted_ws.event_count += ws->event_count;
  35. deleted_ws.active_count += ws->active_count;
  36. deleted_ws.relax_count += ws->relax_count;
  37. deleted_ws.expire_count += ws->expire_count;
  38. deleted_ws.wakeup_count += ws->wakeup_count;
  39. }
  40. spin_unlock_irqrestore(&deleted_ws.lock, flags);
  41. }

2.3.2 __pm_stay_awake()/__pm_relax() 接口

__pm_stay_awake() 用于上锁ws来阻止系统休眠。

  1. @drivers/base/power/wakeup.c
  2. void __pm_stay_awake(struct wakeup_source *ws)
  3. {
  4. unsigned long flags;
  5. if (!ws)
  6. return;
  7. spin_lock_irqsave(&ws->lock, flags);
  8. wakeup_source_report_event(ws, false);//纪录该ws的信息
  9. del_timer(&ws->timer);
  10. ws->timer_expires = 0;
  11. spin_unlock_irqrestore(&ws->lock, flags);
  12. }
  13. static void wakeup_source_report_event(struct wakeup_source *ws, bool hard)
  14. {
  15. ws->event_count++; //持锁次数加1
  16. /* This is racy, but the counter is approximate anyway. */
  17. if (events_check_enabled)
  18. ws->wakeup_count++;
  19. if (!ws->active) //ws还未激活情况下,激活ws
  20. wakeup_source_activate(ws);
  21. if (hard) //如果需要,可以强制阻止系统休眠
  22. pm_system_wakeup();
  23. }
  24. static void wakeup_source_activate(struct wakeup_source *ws)
  25. {
  26. unsigned int cec;
  27. if (WARN_ONCE(wakeup_source_not_registered(ws),
  28. "unregistered wakeup source\n"))
  29. return;
  30. ws->active = true;
  31. ws->active_count++; //激活次数加1
  32. ws->last_time = ktime_get(); //纪录最后操作该锁的时间戳
  33. if (ws->autosleep_enabled) //如果autosleep已使能,则记录该ws阻止休眠时时间戳
  34. ws->start_prevent_time = ws->last_time;
  35. /* Increment the counter of events in progress. */
  36. cec = atomic_inc_return(&combined_event_count); //combined_event_count16位加1
  37. trace_wakeup_source_activate(ws->name, cec);
  38. }

__pm_relax() 用于将持有的睡眠锁释放掉,并在检测到combined_event_count低16位为0(表示当前没有在处理的ws)时会触发wakeup_count_wait_queue等待队列运行,如果工作队列满足睡眠条件,则继续进入睡眠流程,该机制是通过pm_get_wakeup_count()接口与autosleep配合使用的

  1. @drivers/base/power/wakeup.c
  2. void __pm_relax(struct wakeup_source *ws)
  3. {
  4. unsigned long flags;
  5. if (!ws)
  6. return;
  7. spin_lock_irqsave(&ws->lock, flags);
  8. if (ws->active) //如果ws已激活,则去激活该ws
  9. wakeup_source_deactivate(ws);
  10. spin_unlock_irqrestore(&ws->lock, flags);
  11. }
  12. static void wakeup_source_deactivate(struct wakeup_source *ws)
  13. {
  14. unsigned int cnt, inpr, cec;
  15. ktime_t duration;
  16. ktime_t now;
  17. ws->relax_count++; //释放次数加1
  18. /*
  19. * __pm_relax() may be called directly or from a timer function.
  20. * If it is called directly right after the timer function has been
  21. * started, but before the timer function calls __pm_relax(), it is
  22. * possible that __pm_stay_awake() will be called in the meantime and
  23. * will set ws->active. Then, ws->active may be cleared immediately
  24. * by the __pm_relax() called from the timer function, but in such a
  25. * case ws->relax_count will be different from ws->active_count.
  26. */
  27. if (ws->relax_count != ws->active_count) {
  28. ws->relax_count--; //未解决定时锁与主动调用释放锁并发操作时出现冲突做的处理
  29. return;
  30. }
  31. ws->active = false;
  32. now = ktime_get();
  33. duration = ktime_sub(now, ws->last_time);
  34. ws->total_time = ktime_add(ws->total_time, duration); //叠加总的持锁时间
  35. if (ktime_to_ns(duration) > ktime_to_ns(ws->max_time))
  36. ws->max_time = duration; //更新最长持锁时间
  37. ws->last_time = now; //纪录最后操作该锁的时间戳
  38. del_timer(&ws->timer);
  39. ws->timer_expires = 0;
  40. if (ws->autosleep_enabled)//如果autosleep已使能,更新该ws阻止系统休眠的时长
  41. update_prevent_sleep_time(ws, now);
  42. /*
  43. * Increment the counter of registered wakeup events and decrement the
  44. * couter of wakeup events in progress simultaneously.
  45. */
  46. cec = atomic_add_return(MAX_IN_PROGRESS, &combined_event_count);//combined_event_count16位加1
  47. trace_wakeup_source_deactivate(ws->name, cec);
  48. split_counters(&cnt, &inpr);//拆分出combined_event_count16位和低16
  49. if (!inpr && waitqueue_active(&wakeup_count_wait_queue))//如果该ws已经无正在处理的唤醒事件,则通知PM core
  50. wake_up(&wakeup_count_wait_queue);
  51. }

注:同个ws连续使用多次__pm_stay_awake()__pm_relax()只会增加/减少一次combined_event_count低16位(表示正在处理中的事件总数),只要__pm_relax()被调用就会释放锁。

2.3.3 pm_get_wakeup_count()接口

该函数主要是获取已处理的wakeup event数量(combined_event_count高16位)与正在处理的wakeup event数量是否为0(combined_event_count低16位)。

  1. bool pm_get_wakeup_count(unsigned int *count, bool block)
  2. {
  3. unsigned int cnt, inpr;
  4. if (block) {
  5. DEFINE_WAIT(wait); //定义名为wait的等待队列入口
  6. for (;;) {
  7. prepare_to_wait(&wakeup_count_wait_queue, &wait,
  8. TASK_INTERRUPTIBLE); //准备 wakeup_count_wait_queue 等待队列
  9. split_counters(&cnt, &inpr);
  10. if (inpr == 0 || signal_pending(current))
  11. break;
  12. pm_print_active_wakeup_sources();
  13. schedule(); //调度到其他线程
  14. }
  15. //__pm_relax() 里wake_up(&wakeup_count_wait_queue);会触发调度到此处
  16. finish_wait(&wakeup_count_wait_queue, &wait);
  17. }
  18. split_counters(&cnt, &inpr);
  19. *count = cnt;
  20. return !inpr; //返回0表示有待处理事件,返回1表示无待处理事件
  21. }

1.如果入参block为0,则仅仅对入参count赋值当前已处理的wakeup event总数,并返回当前是否有待处理wakeup event(返回0表示有待处理事件,返回1表示无待处理事件)。2.如果入参block为1,则需要一直等到待处理事件为0(combined_event_count低16位为0)或者当前挂起进程有事件需要处理时才退出。该处理分支的wait等待队列会在__pm_relax()满足睡眠条件时触发调度运行,即finish_wait().

2.3.4 pm_wakeup_pending() 接口

该函数的功能是确认当前是否满足休眠条件,返回true表示可以休眠,false表示不可休眠。

  1. bool pm_wakeup_pending(void)
  2. {
  3. unsigned long flags;
  4. bool ret = false;
  5. raw_spin_lock_irqsave(&events_lock, flags);
  6. if (events_check_enabled) {
  7. unsigned int cnt, inpr;
  8. split_counters(&cnt, &inpr);
  9. ret = (cnt != saved_count || inpr > 0);
  10. events_check_enabled = !ret;
  11. }
  12. raw_spin_unlock_irqrestore(&events_lock, flags);
  13. if (ret) {
  14. pm_pr_dbg("Wakeup pending, aborting suspend\n");
  15. pm_print_active_wakeup_sources();
  16. }
  17. return ret || atomic_read(&pm_abort_suspend) > 0;
  18. }

判断允许休眠的依据:1.已处理的wakeup event数量与已记录的数量(saved_count)一致,且2.待处理的wakeup event数量为0,且3.原子量pm_abort_suspend为0(该值大于0表示睡眠流程中出现了唤醒中断或事件,唤醒事件通过调用pm_system_wakeup()来给pm_abort_suspend加1操作。)

2.3.5 device与wakeup_source关联处理的接口

kernel抽象出的device数据结构存放着power manager相关的信息,其中就存放着wakeup source数据结构,如下:

  1. //代码格式错误,仅为呈现数据结构,请忽略格式。
  2. struct device {
  3. // @power: For device power management.
  4. struct dev_pm_info power {
  5. unsigned int can_wakeup:1; //需置1才允许使用wakeup source
  6. struct wakeup_source *wakeup;
  7. };
  8. };

wakeup source框架中为此提供了大量相关的接口直接操作某个dev的ws,接口如下:

  • int device_wakeup_enable(struct device *dev):注册设备的wakeup source1.以dev名注册个ws,并指定该ws dev的parent为当前dev2.将注册的ws关联到dev->power.wakeup,如果存在wakeirq,也会一起绑定到该ws上。

  • int device_wakeup_disable(struct device *dev):注销设备的wakeup source1.取消已注册的ws与dev->power.wakeup的关联2.注销ws

  • void device_set_wakeup_capable(struct device *dev, bool capable):设置设备是否支持wakeup source1.设置dev->power.can_wakeup2.如果设备支持wakeup,则为其创建属性文件(位于/sys/devices/<dev_name>/power/下);如果设备不支持wakeup,则不会移除相关属性文件。

  1. static struct attribute *wakeup_attrs[] = {
  2. #ifdef CONFIG_PM_SLEEP
  3. &dev_attr_wakeup.attr, //RW,可写入enabled/disabled动态配置是否支持wakeup
  4. &dev_attr_wakeup_count.attr, //RO, 读取该dev ws的wakeup_count
  5. &dev_attr_wakeup_active_count.attr, //RO, 读取该dev ws的active_count
  6. &dev_attr_wakeup_abort_count.attr, //RO, 读取该dev ws的wakeup_count
  7. &dev_attr_wakeup_expire_count.attr, //RO, 读取该dev ws的expire_count
  8. &dev_attr_wakeup_active.attr, //RO, 读取该dev ws的active状态
  9. &dev_attr_wakeup_total_time_ms.attr, //RO, 读取该dev ws的total_time
  10. &dev_attr_wakeup_max_time_ms.attr, //RO, 读取该dev ws的max_time
  11. &dev_attr_wakeup_last_time_ms.attr, //RO, 读取该dev ws的last_time
  12. #ifdef CONFIG_PM_AUTOSLEEP
  13. &dev_attr_wakeup_prevent_sleep_time_ms.attr, //RO, 读取该dev ws的prevent_sleep_time
  14. #endif
  15. #endif
  16. NULL,
  17. };

  • int device_init_wakeup(struct device *dev, bool enable):一步到位直接配置是否支持wakeup并且注册/注销ws

  1. int device_init_wakeup(struct device *dev, bool enable)
  2. {
  3. int ret = 0;
  4. if (enable) {
  5. device_set_wakeup_capable(dev, true);
  6. ret = device_wakeup_enable(dev);
  7. } else {
  8. device_wakeup_disable(dev);
  9. device_set_wakeup_capable(dev, false);
  10. }
  11. return ret;
  12. }

  • int device_set_wakeup_enable(struct device *dev, bool enable):设置设备是否能通过ws唤醒系统,注册/注销ws

  1. int device_set_wakeup_enable(struct device *dev, bool enable)
  2. {
  3. return enable ? device_wakeup_enable(dev) : device_wakeup_disable(dev);
  4. }

  • void pm_stay_awake(struct device *dev):持锁设备的ws,不让设备休眠,实际是调用__pm_stay_awake(dev->power.wakeup);实现

  • void pm_relax(struct device *dev):释放设备的ws,允许设备休眠,实际是调用__pm_relax(dev->power.wakeup);实现

总结:1.device_set_wakeup_capable() 用于设置是否支持wakeup,并提供属性节点,便于调试2.device_wakeup_enable()/device_wakeup_disable()/device_set_wakeup_enable()主要是注册/注销设备ws,需在device_set_wakeup_capable()enabled的前提下才能使用。3.device_init_wakeup() 通常使用在默认支持wakeup的device上,在probe/remove时分别enable/disable。4.pm_stay_awake()/pm_relax()主要是持有/释放ws锁,阻止/允许系统休眠

3. 主要工作时序

1)device或者其他需要上锁的模块调用device_init_wakeup()/wakeup_source_register()来注册ws2)在处理业务时,为了防止系统进入睡眠流程,设备或模块可以通过调用pm_stay_awake()/__pm_stay_awake()来持锁ws阻止休眠3)当业务处理完成后,设备或模块可以调用pm_relax()/__pm_relax()来释放ws允许系统休眠4)在__pm_relax()释放锁时,会检查当前是否有正在处理的持锁事件,如果没有,则触发wakeup_count_wait_queue5)wakeup_count_wait_queue所在的pm_get_wakeup_count()接口会返回到autosleep的工作队列中继续走休眠流程

image

4. 调试节点

  1. 获取所有wakeup source信息节点:cat /d/wakeup_sources列出所有wakeup_source当前的信息,包括:name,active_count,event_count,wakeup_count,expire_count,active_since,total_time,max_time,last_change,prevent_suspend_time。注:代码实现在@drivers/base/power/wakeup.c

  2. 从wakeup类下获取某个ws的信息:/sys/class/wakeup/wakeup<id>/wakeup类下汇总了所有已注册的ws,该节点下存在属性:name, active_count, event_count, wakeup_count,expire_count, active_time_ms, total_time_ms, max_time_ms, last_change_ms, prevent_suspend_time_ms。注:代码实现在@drivers/base/power/wakeup_stats.c

  3. 从device节点下获取该设备的ws信息:/sys/devices/<dev_name>/power/该节点存在如下属性信息:wakeup(是否支持唤醒),wakeup_count, wakeup_active_count, wakeup_abort_count, wakeup_expire_count, wakeup_active, wakeup_total_time_ms, max_time_ms, last_time_ms, prevent_sleep_time_ms。注:代码实现在@drivers/base/power/sysfs.c

注:本文是基于内核kernel-5.10展开。上述分析基于32位系统,若是64位系统,则combined_event_count会被拆分成2个32位分别来纪录唤醒事件的总数和正在处理中的唤醒事件的总数

文章转载自:Jayfan_Ma

原文链接:https://www.cnblogs.com/jiafan-ma/p/18200874

体验地址:引迈 - JNPF快速开发平台_低代码开发平台_零代码开发平台_流程设计器_表单引擎_工作流引擎_软件架构

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/运维做开发/article/detail/818044
推荐阅读
相关标签
  

闽ICP备14008679号