赞
踩
如果觉得我的算法分享对你有帮助,欢迎关注我的微信公众号“圆圆的算法笔记”,更多算法笔记和世间万物的学习记录~后台回复“VT”获取Vision Transformer论文整理
随着Transformer在NLP领域主流地位的确立,越来越多的工作开始尝试将Transformer应用到CV领域中。CV Transformer的发展主要经历了以下3个阶段;首先是在CNN中引入Attention机制解决CNN模型结构只能提取local信息缺乏考虑全局信息能力的问题;接下来,相关研究逐渐开始朝着使用完全的Transformer模型替代CNN,解决图像领域问题;目前Transformer解决CV问题已经初见成效,更多的工作开始研究对CV Transformer细节的优化,包括对于高分辨率图像如何提升运行效率、如何更好的将图像转换成序列以保持图像的结构信息、如何进行运行效率和效果的平衡等。本文梳理了近期10篇Transformer、Attention机制在计算机视觉领域的应用,从ViT到Swin Transformer,完整了解CV Transformer的发展过程。
CNN的模型结构特点是对局部信息汇聚建模,其劣势在于难以对长周期进行建模。而Attention模型有较强的的长周期建模能力,因此Attention Augmented Convolutional Networks(2020)提出使用Attention来弥补CNN在超长周期建模的不足。该方法将输入的图像[H, W, F]转换成二维度[H*W, F]作为Attention部分输入,Attention模型采用了multi-head attention的形式。为了弥补Transformer对于空间位置信息提取能力的缺失,本文借助了Self-Attention with Relative Position Representations(2018)的思路,在宽度和高度两个维度分别使用了相对位置编码增强Attention能力。最后,作者用Attention部分得到的信息和CNN部分得到的信息拼接到一起,共同进行后续任务,形成了二者的优势互补。这里简单介绍一下相对位置编码,它是一种替代Transformer中position embedding的方式,对于任意两个位置的元素i和,会将二者的相对位置embedding加入到计算attention的过程中。如果i和j距离为n,就用距离为n对应的一个可学习的embedding表示,同时设定某个阈值,如果i和j的距离超过k,就都用距离k对应的embedding表示。下面的公式左侧代表i和j的相对位置embedding aij怎么用在多头attention中ÿ
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。