赞
踩
RNN实现图像分类
用RNN处理图像
如何将图像的处理理解为时间序列
可以理解为时间序顺序为从上到下
Mnist图像的处理 一个图像为28*28 pixel
时间顺序就是从上往下,从第一行到第28行
- # Hyper Parameters
- EPOCH = 1
-
- BATCH_SIZE = 64
- TIME_STEP = 28 # rnn time step / image height 一共输入time_step次。 时序步长数 seq_len
- INPUT_SIZE = 28 # rnn input size / image width 每次输入多少 输入维度
- LR = 0.01 # learning rate
- DOWNLOAD_MNIST = True # set to True if haven't download the data
- self.rnn = nn.LSTM( # if use nn.RNN(), it hardly learns
- input_size=INPUT_SIZE,
- hidden_size=64, # rnn hidden unit 隐藏层神经元的个数
- num_layers=1, # number of rnn layer 多少层
- batch_first=True,
-
- )
https://www.jianshu.com/p/41c15d301542
理解为什么RNN输入默认不是batch first=True?这是为了便于并行计算。
r_out, (h_n, h_c) = self.rnn(x, None)
# x shape (batch, time_step, input_size)
# r_out shape (batch, time_step, output_size)
# h_n 的形状是 (n_layers, batch, hidden_size) t=time_step 时刻的隐层状态 分线剧情 hidden_state = (h_n, h_c)
# h_c 的形状是 (n_layers, batch, hidden_size) t=time_step 时刻的细胞状态 主线剧情
# 每一次处理完后会输出hidden_state 产生output , 结合下一次读取图像处理完输出的hidden_state 又产生output 这样循环
# 意思就是每一时刻的输入 会包括上一时刻的输入
# 其中hidden_state,又分为 h_n, h_c == h_state, c_state。
# h_n和output的关系: output包括了time_step中每一个时间点的隐层状态,
# 而h_n是第time_step时刻的隐层状态, 所以output中最后一个元素就是h_n, 即output[-1] == h_n.
b_x = b_x.view(-1, 28, 28) # 变一下维度 在pytorch中是.view()的形式表示reshape
完整代码:
LSTM实现是写数字识别
-
- import torch
- from torch import nn
- import torchvision.datasets as dsets
- import torchvision.transforms as transforms
- import matplotlib.pyplot as plt
-
-
- # torch.manual_seed(1) # reproducible
-
- # Hyper Parameters
- EPOCH = 1 # train the training data n times, to save time, we just train 1 epoch
- BATCH_SIZE = 64
- TIME_STEP = 28 # rnn time step / image height 一共输入time_step次。 时序步长数 seq_len
- INPUT_SIZE = 28 # rnn input size / image width 每次输入多少 输入维度
- LR = 0.01 # learning rate
- DOWNLOAD_MNIST = True # set to True if haven't download the data
-
-
- # Mnist digital dataset
- train_data = dsets.MNIST(
- root='./mnist/',
- train=True, # this is training data
- transform=transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to
- # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
- download=DOWNLOAD_MNIST, # download it if you don't have it
- )
-
- # plot one example
- print(train_data.train_data.size()) # (60000, 28, 28)
- print(train_data.train_labels.size()) # (60000)
- plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
- plt.title('%i' % train_data.train_labels[0])
- plt.show()
-
- # Data Loader for easy mini-batch return in training
- train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
-
- # convert test data into Variable, pick 2000 samples to speed up testing
- test_data = dsets.MNIST(root='./mnist/', train=False, transform=transforms.ToTensor())
- test_x = test_data.test_data.type(torch.FloatTensor)[:2000]/255. # shape (2000, 28, 28) value in range(0,1)
- test_y = test_data.test_labels.numpy()[:2000] # covert to numpy array
-
-
- class RNN(nn.Module):
- def __init__(self):
- super(RNN, self).__init__()
-
- # LSTM 函数的参数和RNN都是一致的, 区别在于输入输出不同,LSTM 多了一个细胞的状态, 所以每一个循环层都增加了一个细胞状态h_c的输出.
-
- self.rnn = nn.LSTM( # if use nn.RNN(), it hardly learns
- input_size=INPUT_SIZE,
- hidden_size=64, # rnn hidden unit 隐藏层神经元的个数
- num_layers=1, # number of rnn layer 多少层
- batch_first=True,
- # https://www.jianshu.com/p/41c15d301542 理解为什么RNN输入默认不是batch first=True?这是为了便于并行计算。
- # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
- # 默认是(time_step, batch, input_size) 如果batch_first=True, 则 (batch, time_step, input_size)
- )
-
- self.out = nn.Linear(64, 10)
-
- def forward(self, x):
- # x shape (batch, time_step, input_size)
- # r_out shape (batch, time_step, output_size)
- # h_n 的形状是 (n_layers, batch, hidden_size) t=time_step 时刻的隐层状态 分线剧情 hidden_state = (h_n, h_c)
- # h_c 的形状是 (n_layers, batch, hidden_size) t=time_step 时刻的细胞状态 主线剧情
- # 每一次处理完后会输出hidden_state 产生output , 结合下一次读取图像处理完输出的hidden_state 又产生output 这样循环
- # 意思就是每一时刻的输入 会包括上一时刻的输入
- # 其中hidden_state,又分为 h_n, h_c == h_state, c_state。
-
- r_out, (h_n, h_c) = self.rnn(x, None) # None represents zero initial hidden state
-
- # h_n和output的关系: output包括了time_step中每一个时间点的隐层状态,
- # 而h_n是第time_step时刻的隐层状态, 所以output中最后一个元素就是h_n, 即output[-1] == h_n.
-
- # choose r_out at the last time step
- out = self.out(r_out[:, -1, :]) # r_out shape (batch, time_step, output_size) 在time_step位置插上-1就表示最后一个时刻
- return out
-
-
- rnn = RNN()
- print(rnn)
-
- optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all cnn parameters
- loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted
-
- # training and testing
- for epoch in range(EPOCH):
- for step, (b_x, b_y) in enumerate(train_loader): # gives batch data
- b_x = b_x.view(-1, 28, 28) # 变一下维度 在pytorch中是.view()的形式表示reshape reshape x to (batch, time_step, input_size)
-
- output = rnn(b_x) # rnn output
- loss = loss_func(output, b_y) # cross entropy loss
- optimizer.zero_grad() # clear gradients for this training step
- loss.backward() # backpropagation, compute gradients
- optimizer.step() # apply gradients
-
- if step % 50 == 0:
- test_output = rnn(test_x) # (samples, time_step, input_size)
- pred_y = torch.max(test_output, 1)[1].data.numpy()
- accuracy = float((pred_y == test_y).astype(int).sum()) / float(test_y.size)
- print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
-
- # print 10 predictions from test data
- test_output = rnn(test_x[:10].view(-1, 28, 28))
- pred_y = torch.max(test_output, 1)[1].data.numpy()
- print(pred_y, 'prediction number')
- print(test_y[:10], 'real number')
运行结果:
-------------------------------------------------RNN regressor----------------------------------------------------------------------
##################################################################################
############################################################################
目的
通过sin曲线
去生成cos曲线
其中
def forward(self, x, h_state): # x (batch, time_step, input_size) # h_state (n_layers, batch, hidden_size) # r_out (batch, time_step, hidden_size) # r_out 保存所有time_step的hidden_state r_out, h_state = self.rnn(x, h_state) outs = [] # save all predictions for time_step in range(r_out.size(1)): # calculate output for each time step outs.append(self.out(r_out[:, time_step, :])) return torch.stack(outs, dim=1), h_state其中有一个类似递归的思想
不断的产生h_state 然后再作为输入
所以在后面调用的时候需要第一次传入一个h_state
其次self.rnn() 会生成r_out , h_state
区别于 self.lstm() 会生成r_out , (h_n , h_c)
将每一次time_step 的r_out 作为输入到out中
将结果存入outs[ ]
因为r_out shape (batch, time_step, hidden_size)
所以
outs = [] # save all predictions for time_step in range(r_out.size(1)): # calculate output for each time step outs.append(self.out(r_out[:, time_step, :]))
最后的返回值将outs[ ] 是一个list 将其变为Tensor的形式,将里面的东西压在一起
return torch.stack(outs, dim=1), h_state
在训练阶段
step 是训练的步数
start, end = step * np.pi, (step + 1) * np.pi
截取一小段距离
- steps = np.linspace(start, end, TIME_STEP, dtype=np.float32,endpoint=False) # float32 for converting torch FloatTensor
- x_np = np.sin(steps)
- y_np = np.cos(steps)
在每段距离上撒点 生成训练sin曲线 x_np 预测曲线cos曲线 y_np
- x = torch.from_numpy(
- x_np[np.newaxis, :, np.newaxis]) # shape (batch, time_step, input_size) 增加了2个维度 batch 和 input_size 为1
- y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis])
增加两个维度 变为pytorch接收的维度
- # !! next step is important !!
- h_state = h_state.data # repack the hidden state, break the connection from last iteration
这步非常重要
将每次训练的h_state结果 变为h_state.data 形式赋值给h_state
以下是完整的代码结果
-
- import torch
-
- from torch import nn
-
- import numpy as np
-
- import matplotlib.pyplot as plt
-
-
-
- # torch.manual_seed(1) # reproducible
-
-
-
- # Hyper Parameters
-
- TIME_STEP = 10 # rnn time step
-
- INPUT_SIZE = 1 # rnn input size
-
- LR = 0.02 # learning rate
-
-
-
- # show data
-
- steps = np.linspace(0, np.pi*2, 100, dtype=np.float32) # float32 for converting torch FloatTensor
-
- x_np = np.sin(steps)
-
- y_np = np.cos(steps)
-
- plt.plot(steps, y_np, 'r-', label='target (cos)')
-
- plt.plot(steps, x_np, 'b-', label='input (sin)')
-
- plt.legend(loc='best')
-
- plt.show()
-
-
-
-
-
- class RNN(nn.Module):
-
- def __init__(self):
-
- super(RNN, self).__init__()
-
-
-
- self.rnn = nn.RNN(
-
- input_size=INPUT_SIZE,
-
- hidden_size=32, # rnn hidden unit
-
- num_layers=1, # number of rnn layer
-
- batch_first=True, # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
-
- )
-
- self.out = nn.Linear(32, 1)
-
-
-
- def forward(self, x, h_state):
-
- # x (batch, time_step, input_size)
-
- # h_state (n_layers, batch, hidden_size)
-
- # r_out (batch, time_step, hidden_size)
-
- r_out, h_state = self.rnn(x, h_state)
-
-
-
- outs = [] # save all predictions
-
- for time_step in range(r_out.size(1)): # calculate output for each time step
-
- outs.append(self.out(r_out[:, time_step, :]))
-
- return torch.stack(outs, dim=1), h_state
-
-
-
- # instead, for simplicity, you can replace above codes by follows
-
- # r_out = r_out.view(-1, 32)
-
- # outs = self.out(r_out)
-
- # outs = outs.view(-1, TIME_STEP, 1)
-
- # return outs, h_state
-
-
-
- # or even simpler, since nn.Linear can accept inputs of any dimension
-
- # and returns outputs with same dimension except for the last
-
- # outs = self.out(r_out)
-
- # return outs
-
-
-
- rnn = RNN()
-
- print(rnn)
-
-
-
- optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all cnn parameters
-
- loss_func = nn.MSELoss()
-
-
-
- h_state = None # for initial hidden state
-
-
-
- plt.figure(1, figsize=(12, 5))
-
- plt.ion() # continuously plot
-
-
-
- for step in range(100):
-
- start, end = step * np.pi, (step+1)*np.pi # time range 截取一小段的距离
-
- # use sin predicts cos
-
- steps = np.linspace(start, end, TIME_STEP, dtype=np.float32, endpoint=False) # float32 for converting torch FloatTensor
-
- x_np = np.sin(steps)
-
- y_np = np.cos(steps)
-
-
-
- x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis]) # shape (batch, time_step, input_size) 增加了2个维度 batch 和 input_size 为1
-
- y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis])
-
-
-
- prediction, h_state = rnn(x, h_state) # rnn output
-
- # !! next step is important !!
-
- h_state = h_state.data # repack the hidden state, break the connection from last iteration
-
-
-
- loss = loss_func(prediction, y) # calculate loss
-
- optimizer.zero_grad() # clear gradients for this training step
-
- loss.backward() # backpropagation, compute gradients
-
- optimizer.step() # apply gradients
-
-
-
- # plotting
-
- plt.plot(steps, y_np.flatten(), 'r-')
-
- plt.plot(steps, prediction.data.numpy().flatten(), 'b-')
-
- plt.draw(); plt.pause(0.05)
-
-
-
- plt.ioff()
-
- plt.show()
运行结果:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。