当前位置:   article > 正文

一文详解Prompt学习和微调(Prompt Learning & Prompt Tuning)

prompt编辑self-attention

转载自 | PaperWeekly  

作者 张建伟  单位 浙江大学  方向 小样本学习、图像分割

Self-Attention 和 Transformer 自从问世就成为了自然语言处理领域的新星。得益于全局的注意力机制和并行化的训练,基于 Transformer 的自然语言模型能够方便的编码长距离依赖关系,同时在大规模自然语言数据集上并行训练成为可能。但由于自然语言任务种类繁多,且任务之间的差别不太大,所以为每个任务单独微调一份大模型很不划算。

在 CV 中,不同的图像识别任务往往也需要微调整个大模型,也显得不够经济。Prompt Learning 的提出给这个问题提供了一个很好的方向。

本文关于 NLP 的部分主要参考综述 [1]。

NLP 模型的发展

过去许多机器学习方法是基于全监督学习(fully supervised learning)的。

由于监督学习需要大量的数据学习性能优异的模型,而在 NLP 中大规模训练数据(指为特定任务而标注好的数据)是不足的,因此在深度学习出现之前研究者通常聚焦于特征工程(feature engineering),即利用领域知识从数据中提取好的特征;

在深度学习出现之后, 由于特征可以从数据中习得,因此研究者转向了结构工程(architecture engineering),即通过通过设计一个合适的网络结构来把归纳偏置(inductive bias)引入模型中,从而有利于学习好的特征。

在 2017-2019 年,NLP 模型开始转向一个新的模式(BERT),即预训练 + 微调(pre-train and fine-tune)。在这个模式中, 先用一个固定的结构预训练一个语言模型(language model, LM)预训练的方式就是让模型补全上下文(比如完形填空)。

由于预训练不需要专家知识,因此可以在网络上搜集的大规模文本上直接进行训练。然后这个 LM 通过引入额外的参数或微调来适应到下游任务上。此时研究者转向了目标工程(objective engineering),即为预训练任务和微调任务设计更好的目标函数。

Prompt Learning

2.1 什么是 Prompt?

在做 objective engineering 的过程中,研究者发现让下游任务的目标与预训练的目标对齐是有好的。因此下游任务通过引入文本提示符(textual prompt),把原来的任务目标重构为与预训练模型一致的填空题。

比如一个输入 “I missed the bus today.” 的重构:

情感预测任务。输入:“I missed the bus today. I felt so___.” 其中 “I felt so” 就是提示词(prompt),然后使用 LM 用一个表示情感的词填空。

 翻译任务。输入:“English: I missed the bus today. French: ___.” 其中 “English:” 和 “French:” 就是提示词,然后使用 LM 应该再空位填入相应的法语句子。

我们发现用不同的 prompt 加到相同的输入上,就能实现不同的任务,从而使得下游任务可以很好的对齐到预训练任务上,实现更好的预测效果。

后来研究者发现,在同一个任务上使用不同的 prompt,预测效果也会有显著差异,因此现在有许多研究开始聚焦于 prompt engineering。

2.2 有哪些预训练模型?

● Left-to-Right LM: GPT, GPT-2, GPT-3

● Masked LM: BERT, RoBERTa

● Prefix LM: UniLM1, UniLM2

● Encoder-Decoder: T5, MASS, BART

2.3 有哪些Prompt Learning的方法?

● 按照 prompt 的形状划分:完形填空式,前缀式。

● 按照人的参与与否:人工设计的,自动的(离散的,连续的)

c6cfd1e8b3d9f574625fcbdbcb4ad47a.png

▲ 人工设计的 Prompt

Prompt Tuning

3.1 Fine-tune的策略

在下游任务上微调大规模预训练模型已经成为大量 NLP 和 CV 任务常用的训练模式。然而,随着模型尺寸和任务数量越来越多,微调整个模型的方法会储存每个微调任务的模型副本, 消耗大量的储存空间。尤其是在边缘设备上存储空间和网络速度有限的情况下,共享参数就变得尤为重要。

一个比较直接的共享参数的方法是只微调部分参数,或者向预训练模型中加入少量额外的参数。比如,对于分类任务:

● Linear:只微调分类器 (一个线性层), 冻结整个骨干网络。

● Partial-k:只微调骨干网络最后的 k 层, 冻结其他层 [2][3]。

● MLP-k:增加一个 k 层的 MLP 作为分类器。

● Side-tuning [4]:训练一个 “side” 网络,然后融合预训练特征和 “side” 网络的特征后输入分类器。

● Bias:只微调预训练网络的 bias 参数 [5][6]。

● Adapter [7]:通过残差结构,把额外的 MLP 模块插入 Transformer。

近年来,Transformer 模型在 NLP 和 CV 上大放异彩。基于 Transformer 的模型在大量 CV 任务上已经比肩甚至超过基于卷积的模型。

Transformer 与 ConvNet 比较:Transformer 相比于 ConvNet 的一个显著的特点是:它们在对于空间(时间)维度的操作是不同的。

● ConvNet:卷积核在空间维度上执行卷积操作,因此空间内不同位置的特征通过卷积(可学习的)操作融合信息, 且只在局部区域融合。

● Transformer:空间(时间)维度内不同位置的特征通过 Attention(非学习的)操作融合信息,且在全局上融合。

Transformer 在特征融合时非学习的策略使得其很容易的通过增加额外的 feature 来扩展模型。

3.2 NLP中基于Prompt的fine-tune

● Prefix-Tuning

● Prompt-Tuning

● P-Tuning

● P-Tuning-v2

3.3 CV中基于Prompt的fine-tuning

3.3.1 分类

Visual Prompt Tuning [8]

cbd3b4533c2da69d808aee0684ab1680.png

▲ Visual Prompt Tuning

● VPT-Shallow

59aa36163cdd17358090af99bb011c76.png

● VPT-Deep

f8905abe54cc8129728b2119648d53a8.png

73726bb27c5b546e13ffa068fd043fb2.png

▲ VPT Results

3.3.2 持续学习

Learning to Prompt for Continue Learning [9]

引入一个 prompt pool,对每个 input,从 pool 中取出与其最近的 N 个 prompts 加入 image tokens。input 和 prompts 距离的度量通过计算 input feature 和每个 prompt 的 key 的距离来得到,这些 key 通过梯度随分类目标一起优化。

b1de58482b75a73826f6302db6f205b2.png

▲ L2P

a608707702af2e10abcb172b2f72fda1.png

注意,最后使用 prompt 来分类。

3.3.3 多模态模型

Vision-Language Model: Context Optimization (CoOp) [10]

多模态学习的预训练模型。比如 CLIP,通过对比学习对齐文本和图像的特征空间。

0d3648b744ea4e241c8060406fef9653.png

▲ CLIP

选择不同的文本 prompt 对于精度影响较大。

62619bb05a7e898c3de501c9d257e593.png

▲ Prompt engineering vs Context Optimization (CoOp)

把人工设定的 prompt 替换为 learnable 的 prompt:

● [CLASS] 放在后面:

6188add0ccf58268f2957fb4d8131494.png

● [CLASS] 放在中间:

d5a303827fb6803347bee685cc29f616.png

Prompt 可以在不同类之间公用,也可以为每个类使用不同的 prompts(对于细粒度分类任务更有效)。

b72646c8c9f3033a7b0b2b823f7a1e8f.png

▲ Learning to Prompt for Vision-Language Model

8be2106ce2e591656e2d9d08732c6b46.png

▲ Learning to Prompt for Vision-Language Model

Conditional Prompt Learning for Vision-Language Models [11]

CoOp 在泛化到新的类别上时性能不好。

62cd72b0d0d33d20aa99d1be10b07158.png

▲ To learn generalizable prompts

所以把 prompt 设计为 instance-conditional 的。

ba16b0d31713faa7d35d314b55189061.png

▲ To learn generalizable prompts

为 prompt 加上一个跟当前图像相关的特征以提高泛化性能。具体来说,先用 Image Encoder 计算当前图像的 feature,然后通过一个 Meta-Net 把 feature 映射到 prompt 的特征空间,加到 prompt 上面。

d98a8c9953fc17d310479bc62db0bc85.png

▲ To learn generalizable prompts

3.3.4 域适应

Domain Adaptation via Prompt Learning [12]

用 prompt 来标识 domain 的信息。

8359fe38efdf65713573b203fe5941ac.png

▲ Example prompt structure

通过对比学习解耦 representation 中的 class 和 domain 的表示。

f9d44b8bd3526889a96ae0fa9497a878.png

965bb3eb3c33b189dfa6878b6cd1fad7.png

▲ Domain Adaptation with Prompt Learning

参考文献

[1] Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, Graham Neubig. In arXiv 2021 https://arxiv.org/abs/2107.13586

[2] How transferable are features in deep neural networks? Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson. In NeruIPS 2014 https://proceedings.neurips.cc/paper/2014/hash/375c71349b295fbe2dcdca9206f20a06-Abstract.html

[3] Masked autoencoders are scalable vision learners. Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick. In arXiv 2021 https://arxiv.org/abs/2111.06377

[4] Side-tuning: a baseline for network adaptation via additive side networks. Jeffrey O. Zhang, Alexander Sax, Amir Zamir, Leonidas Guibas, Jitendra Malik. In ECCV 2020 https://link.springer.com/chapter/10.1007/978-3-030-58580-8_41

[5] Bitfit: Simple parameter-efficient fine-tuning for transformer-based masked language-models.Elad Ben Zaken, Shauli Ravfogel, Yoav Goldberg. In ACL 2022 https://arxiv.org/abs/2106.10199

[6] TinyTL: Reduce memory, not parameters for efficient on-device learning. Han Cai, Chuang Gan, Ligeng Zhu, Song Han. In NeurIPS 2020 https://proceedings.neurips.cc/paper/2020/hash/81f7acabd411274fcf65ce2070ed568a-Abstract.html

[7] Parameter-efficient transfer learning for nlp. Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, Sylvain Gelly. In ICML 2019 http://proceedings.mlr.press/v97/houlsby19a.html

[8] Visual Prompt Tuning. Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, Ser-Nam Lim. In arXiv 2022 https://arxiv.org/abs/2203.12119

[9] Learning to Prompt for Continual Learning. Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, Tomas Pfister. In CVPR 2022 https://arxiv.org/abs/2112.08654

[10] Learning to Prompt for Vision-Language Models. Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu. In arXiv 2021 https://arxiv.org/abs/2109.01134

[11] Conditional Prompt Learning for Vision-Language Models. Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu. In CVPR 2022 https://arxiv.org/abs/2203.05557

[12] Domain Adaptation via Prompt Learning. Chunjiang Ge, Rui Huang, Mixue Xie, Zihang Lai, Shiji Song, Shuang Li, Gao Huang. In arXiv 2022 https://arxiv.org/abs/2202.06687

猜您喜欢:

深入浅出stable diffusion:AI作画技术背后的潜在扩散模型论文解读

深入浅出ControlNet,一种可控生成的AIGC绘画生成算法! 

经典GAN不得不读:StyleGAN

3eaaf2fce1611699fb45916175436fb5.png 戳我,查看GAN的系列专辑~!

一顿午饭外卖,成为CV视觉的前沿弄潮儿!

最新最全100篇汇总!生成扩散模型Diffusion Models

ECCV2022 | 生成对抗网络GAN部分论文汇总

CVPR 2022 | 25+方向、最新50篇GAN论文

 ICCV 2021 | 35个主题GAN论文汇总

超110篇!CVPR 2021最全GAN论文梳理

超100篇!CVPR 2020最全GAN论文梳理

拆解组新的GAN:解耦表征MixNMatch

StarGAN第2版:多域多样性图像生成

附下载 | 《可解释的机器学习》中文版

附下载 |《TensorFlow 2.0 深度学习算法实战》

附下载 |《计算机视觉中的数学方法》分享

《基于深度学习的表面缺陷检测方法综述》

《零样本图像分类综述: 十年进展》

《基于深度神经网络的少样本学习综述》

《礼记·学记》有云:独学而无友,则孤陋而寡闻

82cec827d27ef9440f6e897df1f4fc71.jpeg

点击 一顿午饭外卖,成为CV视觉的前沿弄潮儿!,领取优惠券,加入 AI生成创作与计算机视觉 知识星球!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/运维做开发/article/detail/921048
推荐阅读
相关标签
  

闽ICP备14008679号