赞
踩
在我之前的文章里,数据的分库分表都是基于行表达式的方式来实现的,看起来也蛮好用,也挺简单的,但是有时会有些复杂的规则,可能使用行表达式策略会很复杂或者实现不了,我们就讲另外一种分片策略,精确分片算法,通常用来处理=或者in条件的情况比较多。
本文示例大概架构如下图:
pom.xml
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>2.6.0</version> <relativePath/> <!-- lookup parent from repository --> </parent> <groupId>com.alian</groupId> <artifactId>sharding-jdbc</artifactId> <version>0.0.1-SNAPSHOT</version> <name>sharding-jdbc</name> <description>sharding-jdbc</description> <properties> <java.version>1.8</java.version> </properties> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-jpa</artifactId> </dependency> <dependency> <groupId>org.apache.shardingsphere</groupId> <artifactId>sharding-jdbc-spring-boot-starter</artifactId> <version>4.1.1</version> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>druid</artifactId> <version>1.2.15</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>8.0.26</version> <scope>runtime</scope> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-lang3</artifactId> <version>3.12.0</version> </dependency> <dependency> <groupId>org.projectlombok</groupId> <artifactId>lombok</artifactId> <version>1.18.20</version> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>4.12</version> <scope>test</scope> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> </plugin> </plugins> </build> </project>
有些小伙伴的 druid 可能用的是 druid-spring-boot-starter
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>druid-spring-boot-starter</artifactId>
<version>1.2.6</version>
</dependency>
然后出现可能使用不了的各种问题,这个时候你只需要在主类上添加 @SpringBootApplication(exclude = {DruidDataSourceAutoConfigure.class}) 即可
package com.alian.shardingjdbc;
import com.alibaba.druid.spring.boot.autoconfigure.DruidDataSourceAutoConfigure;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication(exclude = {DruidDataSourceAutoConfigure.class})
@SpringBootApplication
public class ShardingJdbcApplication {
public static void main(String[] args) {
SpringApplication.run(ShardingJdbcApplication.class, args);
}
}
CREATE DATABASE `sharding_9` DEFAULT CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci;
CREATE DATABASE `sharding_10` DEFAULT CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci;
CREATE DATABASE `sharding_11` DEFAULT CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci;
在数据库sharding_9、sharding_10、sharding_11下面分别创建两张表:tb_order_1和tb_order_2的结构是一样的
tb_order_1
CREATE TABLE `tb_order_1` (
`order_id` bigint(20) NOT NULL COMMENT '主键',
`user_id` int unsigned NOT NULL DEFAULT '0' COMMENT '用户id',
`price` int unsigned NOT NULL DEFAULT '0' COMMENT '价格(单位:分)',
`order_status` tinyint unsigned NOT NULL DEFAULT '1' COMMENT '订单状态(1:待付款,2:已付款,3:已取消)',
`order_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`title` varchar(100) NOT NULL DEFAULT '' COMMENT '订单标题',
PRIMARY KEY (`order_id`),
KEY `idx_user_id` (`user_id`),
KEY `idx_order_time` (`order_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='订单表';
tb_order_2
CREATE TABLE `tb_order_2` (
`order_id` bigint(20) NOT NULL COMMENT '主键',
`user_id` int unsigned NOT NULL DEFAULT '0' COMMENT '用户id',
`price` int unsigned NOT NULL DEFAULT '0' COMMENT '价格(单位:分)',
`order_status` tinyint unsigned NOT NULL DEFAULT '1' COMMENT '订单状态(1:待付款,2:已付款,3:已取消)',
`order_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`title` varchar(100) NOT NULL DEFAULT '' COMMENT '订单标题',
PRIMARY KEY (`order_id`),
KEY `idx_user_id` (`user_id`),
KEY `idx_order_time` (`order_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='订单表';
application.properties
server.port=8899 server.servlet.context-path=/sharding-jdbc # 允许定义相同的bean对象去覆盖原有的 spring.main.allow-bean-definition-overriding=true # 数据源名称,多数据源以逗号分隔 spring.shardingsphere.datasource.names=ds1,ds2,ds3 # 未配置分片规则的表将通过默认数据源定位 spring.shardingsphere.sharding.default-data-source-name=ds1 # sharding_9数据库连接池类名称 spring.shardingsphere.datasource.ds1.type=com.alibaba.druid.pool.DruidDataSource # sharding_9数据库驱动类名 spring.shardingsphere.datasource.ds1.driver-class-name=com.mysql.cj.jdbc.Driver # sharding_9数据库url连接 spring.shardingsphere.datasource.ds1.url=jdbc:mysql://192.168.0.129:3306/sharding_9?serverTimezone=GMT%2B8&characterEncoding=utf8&useUnicode=true&useSSL=false&zeroDateTimeBehavior=CONVERT_TO_NULL&autoReconnect=true&allowMultiQueries=true&failOverReadOnly=false&connectTimeout=6000&maxReconnects=5 # sharding_9数据库用户名 spring.shardingsphere.datasource.ds1.username=alian # sharding_9数据库密码 spring.shardingsphere.datasource.ds1.password=123456 # sharding_10数据库连接池类名称 spring.shardingsphere.datasource.ds2.type=com.alibaba.druid.pool.DruidDataSource # sharding_10数据库驱动类名 spring.shardingsphere.datasource.ds2.driver-class-name=com.mysql.cj.jdbc.Driver # sharding_10数据库url连接 spring.shardingsphere.datasource.ds2.url=jdbc:mysql://192.168.0.129:3306/sharding_10?serverTimezone=GMT%2B8&characterEncoding=utf8&useUnicode=true&useSSL=false&zeroDateTimeBehavior=CONVERT_TO_NULL&autoReconnect=true&allowMultiQueries=true&failOverReadOnly=false&connectTimeout=6000&maxReconnects=5 # sharding_10数据库用户名 spring.shardingsphere.datasource.ds2.username=alian # sharding_10数据库密码 spring.shardingsphere.datasource.ds2.password=123456 # sharding_11数据库连接池类名称 spring.shardingsphere.datasource.ds3.type=com.alibaba.druid.pool.DruidDataSource # sharding_11数据库驱动类名 spring.shardingsphere.datasource.ds3.driver-class-name=com.mysql.cj.jdbc.Driver # sharding_11数据库url连接 spring.shardingsphere.datasource.ds3.url=jdbc:mysql://192.168.0.129:3306/sharding_11?serverTimezone=GMT%2B8&characterEncoding=utf8&useUnicode=true&useSSL=false&zeroDateTimeBehavior=CONVERT_TO_NULL&autoReconnect=true&allowMultiQueries=true&failOverReadOnly=false&connectTimeout=6000&maxReconnects=5 # sharding_11数据库用户名 spring.shardingsphere.datasource.ds3.username=alian # sharding_11数据库密码 spring.shardingsphere.datasource.ds3.password=123456 # 采用精确分片策略:PreciseShardingStrategy,根据user_id的奇偶性来添加到不同的库中 spring.shardingsphere.sharding.tables.tb_order.database-strategy.standard.sharding-column=user_id spring.shardingsphere.sharding.tables.tb_order.database-strategy.standard.precise-algorithm-class-name=com.alian.shardingjdbc.algorithm.DatabasePreciseShardingAlgorithm # 指定tb_order表的数据分布情况,配置数据节点,使用Groovy的表达式,逻辑表tb_order对应的节点是:ds1.tb_order_1, ds1.tb_order_2,ds2.tb_order_1, ds2.tb_order_2,ds3.tb_order_1, ds3.tb_order_2 spring.shardingsphere.sharding.tables.tb_order.actual-data-nodes=ds$->{1..3}.tb_order_$->{1..2} # 采用精确分片策略:PreciseShardingStrategy # 指定tb_order表的分片策略中的分片键 spring.shardingsphere.sharding.tables.tb_order.table-strategy.standard.sharding-column=order_id # 指定tb_order表的分片策略中的分片算法表达式,使用Groovy的表达式 spring.shardingsphere.sharding.tables.tb_order.table-strategy.standard.precise-algorithm-class-name=com.alian.shardingjdbc.algorithm.OrderTablePreciseShardingAlgorithm # 指定tb_order表的主键为order_id spring.shardingsphere.sharding.tables.tb_order.key-generator.column=order_id # 指定tb_order表的主键生成策略为SNOWFLAKE spring.shardingsphere.sharding.tables.tb_order.key-generator.type=SNOWFLAKE # 指定雪花算法的worker.id spring.shardingsphere.sharding.tables.tb_order.key-generator.props.worker.id=100 # 指定雪花算法的max.tolerate.time.difference.milliseconds spring.shardingsphere.sharding.tables.tb_order.key-generator.props.max.tolerate.time.difference.milliseconds=20 # 打开sql输出日志 spring.shardingsphere.props.sql.show=true
application.yml
server: port: 8899 servlet: context-path: /sharding-jdbc spring: main: # 允许定义相同的bean对象去覆盖原有的 allow-bean-definition-overriding: true shardingsphere: props: sql: # 打开sql输出日志 show: true datasource: # 数据源名称,多数据源以逗号分隔 names: ds1,ds2,ds3 ds1: # 数据库连接池类名称 type: com.alibaba.druid.pool.DruidDataSource # 数据库驱动类名 driver-class-name: com.mysql.cj.jdbc.Driver # 数据库url连接 url: jdbc:mysql://192.168.0.129:3306/sharding_9?serverTimezone=GMT%2B8&characterEncoding=utf8&useUnicode=true&useSSL=false&zeroDateTimeBehavior=CONVERT_TO_NULL&autoReconnect=true&allowMultiQueries=true&failOverReadOnly=false&connectTimeout=6000&maxReconnects=5 # 数据库用户名 username: alian # 数据库密码 password: 123456 ds2: # 数据库连接池类名称 type: com.alibaba.druid.pool.DruidDataSource # 数据库驱动类名 driver-class-name: com.mysql.cj.jdbc.Driver # 数据库url连接 url: jdbc:mysql://192.168.0.129:3306/sharding_10?serverTimezone=GMT%2B8&characterEncoding=utf8&useUnicode=true&useSSL=false&zeroDateTimeBehavior=CONVERT_TO_NULL&autoReconnect=true&allowMultiQueries=true&failOverReadOnly=false&connectTimeout=6000&maxReconnects=5 # 数据库用户名 username: alian # 数据库密码 password: 123456 ds3: # 数据库连接池类名称 type: com.alibaba.druid.pool.DruidDataSource # 数据库驱动类名 driver-class-name: com.mysql.cj.jdbc.Driver # 数据库url连接 url: jdbc:mysql://192.168.0.129:3306/sharding_11?serverTimezone=GMT%2B8&characterEncoding=utf8&useUnicode=true&useSSL=false&zeroDateTimeBehavior=CONVERT_TO_NULL&autoReconnect=true&allowMultiQueries=true&failOverReadOnly=false&connectTimeout=6000&maxReconnects=5 # 数据库用户名 username: alian # 数据库密码 password: 123456 sharding: # 未配置分片规则的表将通过默认数据源定位 default-data-source-name: ds1 tables: tb_order: # 由数据源名 + 表名组成,以小数点分隔。多个表以逗号分隔,支持inline表达式 actual-data-nodes: ds$->{1..3}.tb_order_$->{1..2} # 分库策略 database-strategy: # 精确分片策略 standard: # 分片键 sharding-column: user_id # 精确分片算法类名称,用于=和IN precise-algorithm-class-name: com.alian.shardingjdbc.algorithm.DatabasePreciseShardingAlgorithm # 分表策略 table-strategy: # 精确分片策略 standard: # 分片键 sharding-column: order_id # 精确分片算法类名称,用于=和IN precise-algorithm-class-name: com.alian.shardingjdbc.algorithm.OrderTablePreciseShardingAlgorithm # key生成器 key-generator: # 自增列名称,缺省表示不使用自增主键生成器 column: order_id # 自增列值生成器类型,缺省表示使用默认自增列值生成器(SNOWFLAKE/UUID) type: SNOWFLAKE # SnowflakeShardingKeyGenerator props: # SNOWFLAKE算法的worker.id worker: id: 100 # SNOWFLAKE算法的max.tolerate.time.difference.milliseconds max: tolerate: time: difference: milliseconds: 20
通过精确分片算法完成分库分表
database-strategy 采用的是 精确分片策略 ,算法实现类是我们自定义的类 com.alian.shardingjdbc.algorithm.DatabasePreciseShardingAlgorithm
table-strategy 采用的是 精确分片策略 ,算法实现类是我们自定义的类 com.alian.shardingjdbc.algorithm.OrderTablePreciseShardingAlgorithm
actual-data-nodes 使用Groovy的表达式 ds$->{1…3}.tb_order_$->{1…2},对应的数据源是:ds1、 ds2、 ds3,物理表是:tb_order_1、 tb_order_2,组合起来就有6种方式,这里就不一一列举了
key-generator :key生成器,需要指定字段和类型,比如这里如果是SNOWFLAKE,最好也配置下props中的两个属性: worker.id 与 max.tolerate.time.difference.milliseconds 属性
在行表示式分片策略中,基本上只需要配置行表示即可,不需要我们开发java,如果有一些比较特殊的要求,表达式很复杂或者是没办法使用表达式,假设我要求根据 userId 进行分库,要满足:
用户id尾数 | 要分片到数据库 |
---|---|
0,8 | ds1 |
1,3,6,9 | ds2 |
2,4,5,7 | ds3 |
使用行表示就很复杂,我们就可以使用自定义分片算法,这里采用精确分片算法。
DatabasePreciseShardingAlgorithm.java
@Slf4j public class DatabasePreciseShardingAlgorithm implements PreciseShardingAlgorithm<Integer> { public DatabasePreciseShardingAlgorithm() { } @Override public String doSharding(Collection<String> dataSourceCollection, PreciseShardingValue<Integer> preciseShardingValue) { // 获取分片键的值 Integer shardingValue = preciseShardingValue.getValue(); // 获取逻辑 String logicTableName = preciseShardingValue.getLogicTableName(); log.info("分片键的值:{},逻辑表:{}", shardingValue, logicTableName); // 对分片键的值对10取模,得到(0-9),我这里就配置了三个库,实际根据需要修改 // 0,8插入到 ds1 // 1,3,6,9插入到 ds2 // 2,4,5,7插入到 ds3 int index = shardingValue % 10; int sourceTarget; if (ArrayUtils.contains(new int[]{0, 8}, index)) { sourceTarget = 1; } else if (ArrayUtils.contains(new int[]{1, 3, 6, 9}, index)) { sourceTarget = 2; } else { sourceTarget = 3; } // 遍历数据源 for (String databaseSource : dataSourceCollection) { // 判断数据源是否存在 if (databaseSource.endsWith(sourceTarget + "")) { return databaseSource; } } // 不存在则抛出异常 throw new UnsupportedOperationException(); } }
实际使用也很简单,我们只需要实现接口 PreciseShardingAlgorithm<Integer> ,需要注意的是这里的类型 Integer 就是分片键 userId 的类型。然后重写方法 doSharding ,这个方法会有两个参数,第一个就是数据源的集合,第二个是分片对象,我们可以获取到 分片键的值 及其 逻辑表 ,具体见上面代码。
分库时就是需要我们通过自定义的算法计算出需要使用的数据源 databaseSource 。
OrderTablePreciseShardingAlgorithm.java
@Slf4j public class OrderTablePreciseShardingAlgorithm implements PreciseShardingAlgorithm<Long> { public OrderTablePreciseShardingAlgorithm() { } @Override public String doSharding(Collection<String> tableCollection, PreciseShardingValue<Long> preciseShardingValue) { // 获取分片键的值 Long shardingValue = preciseShardingValue.getValue(); // 取模分表(取模都是从0到collection.size()) long index = shardingValue % tableCollection.size(); // 判断逻辑表名 String logicTableName = preciseShardingValue.getLogicTableName(); // 物理表名 String PhysicalTableName = logicTableName + "_" + (index + 1); log.info("分片键的值:{},物理表名:{}", shardingValue, PhysicalTableName); // 判断是否存在该表 if (tableCollection.contains(PhysicalTableName)) { return PhysicalTableName; } // 不存在则抛出异常 throw new UnsupportedOperationException(); } }
精确分表也是要实现接口 PreciseShardingAlgorithm<Long> ,需要注意的是这里的 Long 就是分片键 orderId 的类型。然后重写方法 doSharding ,这个方法会有两个参数,第一个就是物理表的集合,第二个是分片对象,我们可以获取到 分片键的值 及其 逻辑表 ,具体见上面代码。
我们就简单取模分片了,不过我们是通过我们自定义方法去实现的,而不是行表示,因为这样你可以很灵活的设计你们的分片算法,比如你们可以使用基因法等等方式去处理,我这里只是为了演示方便。
Order.java
@Data @Entity @Table(name = "tb_order") public class Order implements Serializable { @Id @GeneratedValue(strategy = GenerationType.IDENTITY) @Column(name = "order_id") private Long orderId; @Column(name = "user_id") private Integer userId; @Column(name = "price") private Integer price; @Column(name = "order_status") private Integer orderStatus; @Column(name = "title") private String title; @Column(name = "order_time") private Date orderTime; }
OrderRepository.java
public interface OrderRepository extends PagingAndSortingRepository<Order, Long> { /** * 根据订单id查询订单 * @param orderId * @return */ Order findOrderByOrderId(Long orderId); /** * 根据订单id和用户id查询订单 * @param orderId * @param userId * @return */ Order findOrderByOrderIdAndUserId(Long orderId,Integer userId); }
OrderService.java
@Slf4j @Service public class OrderService { @Autowired private OrderRepository orderRepository; public void saveOrder(Order order) { orderRepository.save(order); } public Order queryOrder(Long orderId) { return orderRepository.findOrderByOrderId(orderId); } public Order findOrderByOrderIdAndUserId(Long orderId, Integer userId) { return orderRepository.findOrderByOrderIdAndUserId(orderId, userId); } }
OrderTests.java
@Slf4j @RunWith(SpringJUnit4ClassRunner.class) @SpringBootTest public class OrderTests { @Autowired private OrderService orderService; @Test public void saveOrder() { for (int i = 0; i < 20; i++) { Order order = new Order(); // 随机生成1000到1009的用户id int userId = (int) Math.round(Math.random() * (1009 - 1000) + 1000); order.setUserId(userId); // 随机生成50到100的金额 int price = (int) Math.round(Math.random() * (10000 - 5000) + 5000); order.setPrice(price); order.setOrderStatus(2); order.setOrderTime(new Date()); order.setTitle(""); orderService.saveOrder(order); } } @Test public void queryOrder() { Long orderId = 875100237105348608L; Order order = orderService.queryOrder(orderId); log.info("查询的结果:{}", order); } @Test public void findOrderByOrderIdAndUserId() { Long orderId = 875100237105348608L; Integer userId=1009; Order order = orderService.findOrderByOrderIdAndUserId(orderId,userId); log.info("查询的结果:{}", order); } }
效果图:
从上面的数据来看,满足我们分库分表的要求的,实现都是基于我们自定义的算法实现。
@Test
public void queryOrder() {
Long orderId = 875112578379300864L;
Order order = orderService.queryOrder(orderId);
log.info("查询的结果:{}", order);
}
20:37:23 575 INFO [main]:分片键的值:875112578379300864,物理表名:tb_order_2
20:37:23 575 INFO [main]:分片键的值:875112578379300864,物理表名:tb_order_2
20:37:23 575 INFO [main]:分片键的值:875112578379300864,物理表名:tb_order_2
20:37:23 595 INFO [main]:Logic SQL: select order0_.order_id as order_id1_0_, order0_.order_status as order_st2_0_, order0_.order_time as order_ti3_0_, order0_.price as price4_0_, order0_.title as title5_0_, order0_.user_id as user_id6_0_ from tb_order order0_ where order0_.order_id=?
20:37:23 595 INFO [main]:SQLStatement: SelectStatementContext(super=CommonSQLStatementContext(sqlStatement=org.apache.shardingsphere.sql.parser.sql.statement.dml.SelectStatement@28b68067, tablesContext=org.apache.shardingsphere.sql.parser.binder.segment.table.TablesContext@19540247), tablesContext=org.apache.shardingsphere.sql.parser.binder.segment.table.TablesContext@19540247, projectionsContext=ProjectionsContext(startIndex=7, stopIndex=200, distinctRow=false, projections=[ColumnProjection(owner=order0_, name=order_id, alias=Optional[order_id1_0_]), ColumnProjection(owner=order0_, name=order_status, alias=Optional[order_st2_0_]), ColumnProjection(owner=order0_, name=order_time, alias=Optional[order_ti3_0_]), ColumnProjection(owner=order0_, name=price, alias=Optional[price4_0_]), ColumnProjection(owner=order0_, name=title, alias=Optional[title5_0_]), ColumnProjection(owner=order0_, name=user_id, alias=Optional[user_id6_0_])]), groupByContext=org.apache.shardingsphere.sql.parser.binder.segment.select.groupby.GroupByContext@acb1c9c, orderByContext=org.apache.shardingsphere.sql.parser.binder.segment.select.orderby.OrderByContext@1c681761, paginationContext=org.apache.shardingsphere.sql.parser.binder.segment.select.pagination.PaginationContext@411933, containsSubquery=false)
20:37:23 595 INFO [main]:Actual SQL: ds1 ::: select order0_.order_id as order_id1_0_, order0_.order_status as order_st2_0_, order0_.order_time as order_ti3_0_, order0_.price as price4_0_, order0_.title as title5_0_, order0_.user_id as user_id6_0_ from tb_order_2 order0_ where order0_.order_id=? ::: [875112578379300864]
20:37:23 595 INFO [main]:Actual SQL: ds2 ::: select order0_.order_id as order_id1_0_, order0_.order_status as order_st2_0_, order0_.order_time as order_ti3_0_, order0_.price as price4_0_, order0_.title as title5_0_, order0_.user_id as user_id6_0_ from tb_order_2 order0_ where order0_.order_id=? ::: [875112578379300864]
20:37:23 595 INFO [main]:Actual SQL: ds3 ::: select order0_.order_id as order_id1_0_, order0_.order_status as order_st2_0_, order0_.order_time as order_ti3_0_, order0_.price as price4_0_, order0_.title as title5_0_, order0_.user_id as user_id6_0_ from tb_order_2 order0_ where order0_.order_id=? ::: [875112578379300864]
20:37:23 640 INFO [main]:查询的结果:Order(orderId=875112578379300864, userId=1009, price=7811, orderStatus=2, title=, orderTime=2023-06-12 20:24:57.0)
从上面的结果我们可以看到当我们查询order_id为 875112578379300864 的记录时,因为我们之前是按 order_id 取模进行的分表,最终得到的是 tb_order_2 ,但是这里根本不知道是哪个库,所以把 ds1、ds2、ds3 都查了一遍,那有什么方法可以改善么?
@Test
public void findOrderByOrderIdAndUserId() {
Long orderId = 875112578379300864L;
Integer userId=1009;
Order order = orderService.findOrderByOrderIdAndUserId(orderId,userId);
log.info("查询的结果:{}", order);
}
20:41:09 242 INFO [main]:分片键的值:1009,逻辑表:tb_order
20:41:09 246 INFO [main]:分片键的值:875112578379300864,物理表名:tb_order_2
20:41:09 264 INFO [main]:Logic SQL: select order0_.order_id as order_id1_0_, order0_.order_status as order_st2_0_, order0_.order_time as order_ti3_0_, order0_.price as price4_0_, order0_.title as title5_0_, order0_.user_id as user_id6_0_ from tb_order order0_ where order0_.order_id=? and order0_.user_id=?
20:41:09 264 INFO [main]:SQLStatement: SelectStatementContext(super=CommonSQLStatementContext(sqlStatement=org.apache.shardingsphere.sql.parser.sql.statement.dml.SelectStatement@58d79479, tablesContext=org.apache.shardingsphere.sql.parser.binder.segment.table.TablesContext@102c24d1), tablesContext=org.apache.shardingsphere.sql.parser.binder.segment.table.TablesContext@102c24d1, projectionsContext=ProjectionsContext(startIndex=7, stopIndex=200, distinctRow=false, projections=[ColumnProjection(owner=order0_, name=order_id, alias=Optional[order_id1_0_]), ColumnProjection(owner=order0_, name=order_status, alias=Optional[order_st2_0_]), ColumnProjection(owner=order0_, name=order_time, alias=Optional[order_ti3_0_]), ColumnProjection(owner=order0_, name=price, alias=Optional[price4_0_]), ColumnProjection(owner=order0_, name=title, alias=Optional[title5_0_]), ColumnProjection(owner=order0_, name=user_id, alias=Optional[user_id6_0_])]), groupByContext=org.apache.shardingsphere.sql.parser.binder.segment.select.groupby.GroupByContext@495f7ca4, orderByContext=org.apache.shardingsphere.sql.parser.binder.segment.select.orderby.OrderByContext@700202fa, paginationContext=org.apache.shardingsphere.sql.parser.binder.segment.select.pagination.PaginationContext@141234df, containsSubquery=false)
20:41:09 264 INFO [main]:Actual SQL: ds2 ::: select order0_.order_id as order_id1_0_, order0_.order_status as order_st2_0_, order0_.order_time as order_ti3_0_, order0_.price as price4_0_, order0_.title as title5_0_, order0_.user_id as user_id6_0_ from tb_order_2 order0_ where order0_.order_id=? and order0_.user_id=? ::: [875112578379300864, 1009]
20:41:09 318 INFO [main]:查询的结果:Order(orderId=875112578379300864, userId=1009, price=7811, orderStatus=2, title=, orderTime=2023-06-12 20:24:57.0)
从上面的结果我们可以看到当我们查询order_id为 875112578379300864 的记录时,用户id为 1009 的记录时,最终直接查询到 ds2.tb_order_2 ,并没有把所有的库都去查了一遍,因为我们的查询条件里有 userId ,会自动计算到对应的数据源,而按 order_id 取模进行的分表会找到对应的表。所以对于这种一个表多个字段同时分库分表的时候,一定要注意这一点,这样的查询能提高效率。
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。