赞
踩
目录
资源下载链接1(推荐):https://download.csdn.net/download/great_yzl/22363793
资源下载链接2(不推荐):
https://pan.baidu.com/s/17DeVm48VRG0tlEzQM0KfSA
提取码:gx4a
- # 1、读取数据
- data = pd.read_csv('titanic.csv')
- # 2、设置特征值和目标值
- train = data[['pclass', 'age', 'room', 'sex']]
- test = list(data['survived'])
可以看出来,上面这些明显是缺失了一些数据,这样在后面运行的时候会报错。
- # 3-1、缺失值处理
- train['age'].fillna(train['age'].mean(), inplace=True)
- train['room'].fillna(train['room'][0], inplace=True)
- # 3-2、特征值转换为字典
- train = train.to_dict(orient='records')
- print(train)
- # 4、划分数据集
- train_data, test_data, train_target, test_target = train_test_split(train, test)
- # 4、特征工程(字典特征值提取)
- transfer = DictVectorizer()
- train_data = transfer.fit_transform(train_data)
- test_data = transfer.transform(test_data)
- # print(train_data)
- # 6、决策树预估器,训练
- estimator = DecisionTreeClassifier()
- estimator.fit(train_data, train_target)
- # 方法一:比对
- predict = estimator.predict(test_data)
- print(predict == test_target)
- # 方法二:计算分数(正确率)
- score = estimator.score(test_data, test_target)
- print('准确率为:', score)
- # 泰坦尼克号(游客存活率预估)
- import pandas as pd
- from sklearn.model_selection import train_test_split
- from sklearn.feature_extraction import DictVectorizer
- from sklearn.tree import DecisionTreeClassifier
-
- # 1、读取数据
- data = pd.read_csv('titanic.csv')
- # print(data)
-
- # 2、设置特征值和目标值
- train = data[['pclass', 'age', 'room', 'sex']]
- test = list(data['survived'])
-
- # 3、数据处理
- # 3-1、缺失值处理
- train['age'].fillna(train['age'].mean(), inplace=True)
- train['room'].fillna(train['room'][0], inplace=True)
-
- # 3-2、特征值转换为字典
- train = train.to_dict(orient='records')
-
- # 3-3、划分数据集
- train_data, test_data, train_target, test_target = train_test_split(train, test)
- # print(train_data)
-
- # 4、特征工程(字典特征值提取)
- transfer = DictVectorizer()
- train_data = transfer.fit_transform(train_data)
- test_data = transfer.transform(test_data)
- # print(train_data)
-
- # 5、决策树预估器,训练
- estimator = DecisionTreeClassifier()
- estimator.fit(train_data, train_target)
-
- # 6、模型评估
- # 方法一:比对
- predict = estimator.predict(test_data)
- print(predict == test_target)
-
- # 方法二:计算分数(正确率)
- score = estimator.score(test_data, test_target)
- print('准确率为:', score)
-
-

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。