赞
踩
这是吴恩达老师在DeepLearningAI上的课程,《生产系统中的机器学习》第一个不记分实验的学习记录。这学期有老师推荐了这门课,听了一下果断付费了,因为现在比较权威的、跟生产联系紧密的机器学习或者是深度学习的课程并不多,这一系列课的质量很高,听下来收获也很多。为了push自己保持学习,我会把所有实验过程都总结记录,第一个是关于模型部署。
部署预先训练好的计算机视觉模型YOLO v3。步骤如下:
第一步先查看一下需要使用YOLO V3检测的图片。
from IPython.display import Image, display
调用IPython.display方法显示图片。
# 要查看的图片名称列表
image_files = [
'apple.jpg',
'clock.jpg',
'oranges.jpg',
'car.jpg'
]
for image_file in image_files:
print(f'\nDisplaying image: {image_file}')
display(Image(filename=f'course1/week1-ungraded-lab/images/{image_file}'))
Displaying image: apple.jpg
Displaying image: clock.jpg
Displaying image: oranges.jpg
Displaying image: car.jpg
接下来,我们尝试一下在本地使用YOLO V3来对这些图片做一下目标检测。
首先要创建一个目录images_with_boxes用于存放目标检测的结果。YOLO V3会把图片中的识别到的物体用一个矩形框框出,并对其打上标签,再将这个框的坐标、标签和检测的置信度返回。在得到YOLO V3的返回结果后,我们可以根据坐标和标签在原图片上画出矩形框并打上标签,输出为一张新的图片作为检测结果存放在输出目录中。
import os
dir_name = 'course1/week1-ungraded-lab/images_with_boxes'
if not os.path.exists(dir_name):
os.makedirs(dir_name)
接着定义一个方法detect_and_draw_box(filename, model, confidence),用于实现上文所说的使用YOLO V3进行目标检测、并根据其返回结果在图片上画框打标签、输出图片至结果目录。方法参数如下:
import cv2 import cvlib as cv from cvlib.object_detection import draw_bbox def detect_and_draw_box(filename, model='yolov3-tiny', confidence=0.5): img_filepath = f'course1/week1-ungraded-lab/images/{filename}' # 读取图像 img = cv2.imread(img_filepath) # 使用指定的model进行目标检测,返回置信度大于阈值confident的结果:边框坐标、标签和置信度 bbox, label, conf = cv.detect_common_objects(img, confidence=confidence, model=model) print(f'========================\nImage processed: {filename}\n') for l, c in zip(label, conf): print(f'Detected object: {l} with confidence level of {c}\n') # 在图中绘制边框和标签 output_image = draw_bbox(img, bbox, label, conf) # 输出检测结果图片 cv2.imwrite(f'course1/week1-ungraded-lab/images_with_boxes/{filename}', output_image) # 显示图片 display(Image(f'course1/week1-ungraded-lab/images_with_boxes/{filename}'))
最后,调用detect_and_draw_box方法开始目标检测。
for image_file in image_files:
detect_and_draw_box(image_file)
========================
Image processed: apple.jpg
Detected object: apple with confidence level of 0.571720540523529
========================
Image processed: clock.jpg
Detected object: clock with confidence level of 0.9683184623718262
========================
Image processed: oranges.jpg
Detected object: orange with confidence level of 0.6185590624809265
Detected object: orange with confidence level of 0.5561691522598267
========================
Image processed: car.jpg
Detected object: car with confidence level of 0.6325409412384033
再尝试对包含有多种目标的图片用YOLO V3进行检测。
detect_and_draw_box('fruits.jpg')
========================
Image processed: fruits.jpg
Detected object: apple with confidence level of 0.5818483829498291
Detected object: orange with confidence level of 0.5346482992172241
Detected object: orange with confidence level of 0.515099287033081
显然,上面的检测出现了错误,把最左侧的“橘子”识别为了“苹果”;同时,周围还有大量的目标没有被检测到,这跟置信度阈值设置过高有关。
尝试降低置信度阈值至0.2。
detect_and_draw_box('fruits.jpg', confidence=0.2)
======================== Image processed: fruits.jpg Detected object: apple with confidence level of 0.5818483829498291 Detected object: orange with confidence level of 0.5346482992172241 Detected object: orange with confidence level of 0.515099287033081 Detected object: apple with confidence level of 0.34759876132011414 Detected object: orange with confidence level of 0.32876095175743103 Detected object: apple with confidence level of 0.31244680285453796 Detected object: orange with confidence level of 0.2798606753349304 Detected object: orange with confidence level of 0.2749978303909302 Detected object: apple with confidence level of 0.2744506895542145 Detected object: orange with confidence level of 0.21419063210487366
调低阈值后,更多的物品被检测到并正确标记了。但是这并不能使之前错误的标记变得正确——模型对目标的检测出现错误,这是在所难免的,这也是为什么在课中吴恩达老师会说在生产中更为常见的是“半自动化”的系统。
FastAPI is a modern, fast (high-performance), web framework for building APIs with Python 3.6+ based on standard Python type hints. 这是fastAPI的官方介绍,简而言之,这是一个用于构建API的web框架,和Django、Flask类似。配合web服务器框架uvicorn,能够快速搭建起一个简单的服务器。
本实验将构建一个C/S架构的系统,客户端调用服务端提供的目标检测接口,将图片上传,服务端接收图片,使用YOLO V3进行目标检测,对图片中的目标进行标记后返回给调用者(即客户端)。
首先,创建目录images_uploaded,服务端对图片进行检测并标记后,会将标记后的图片存放于此。
dir_name = 'course1/week1-ungraded-lab/images_uploaded'
if not os.path.exists(dir_name):
os.makedirs(dir_name)
导入fastAPI、uvicorn相关包。
import io
import uvicorn
import numpy as np
import nest_asyncio
from enum import Enum
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.responses import StreamingResponse
创建一个fastAPI实例,并分别创建用于相应HTTP请求的两个端点(endpoint)home和prediction。
其中,prediction方法是重点,用于响应客户端发来的目标检测请求。客户端调用此方法,选择用于检测的模型model,并上传需要检测的图片file;predict方法先判断图片格式是否为“jpg”、“jpeg”和“png”其中之一,只可检测这三种格式图片,否则HTTP返回错误码415,图片格式无误则接收并解码成图片,使用模型进行检测,并将结果图片写入之前创建的目录,再转换为字节流返回给调用者。
app = FastAPI(title='Deploying a ML Model with FastAPI') class Model(str, Enum): yolov3tiny = 'yolov3-tiny' yolov3 = 'yolov3' @app.get('/') def home(): return 'Congratulations! Your API is working as expected. Now head over to http://localhost:8000/docs.' @app.post('/predict') def prediction(model: Model, file: UploadFile = File(...)): filename = file.filename fileExtension = filename.split('.')[-1] in ('jpg', 'jpeg', 'png') if not fileExtension: # 只能处理这三种类型的图片 raise HTTPException(status_code=415, detail='Unsupported file provided.') # 读取文件字节流 image_stream = io.BytesIO(file.file.read()) image_stream.seek(0) # 将文件字节流写入Numpy array file_bytes = np.asarray(bytearray(image_stream.read()), dtype=np.uint8) # 将Numpy array解码为图片 image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR) # 使用模型进行目标检测 bbox, label, conf = cv.detect_common_objects(image, model=model) # 创建包含边框和标签的图片 output_image = draw_bbox(image, bbox, label, conf) # 将检测结果图片保存在服务端的指定目录下 cv2.imwrite(f'course1/week1-ungraded-lab/images_uploaded/{filename}', output_image) # 打开检测结果图片,以文件流返回给调用者 file_image = open(f'course1/week1-ungraded-lab/images_uploaded/{filename}', mode='rb') return StreamingResponse(file_image, media_type='image/jpeg')
使用uvicorn运行fastAPI实例,即启动服务器。
nest_asyncio.apply()
host = '0.0.0.0' if os.getenv('DOCKER-SETUP') else '127.0.0.1'
uvicorn.run(app, host=host, port=8000)
INFO: Started server process [19884]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO: 127.0.0.1:60163 - "POST /predict?model=yolov3-tiny HTTP/1.1" 200 OK
INFO: 127.0.0.1:60175 - "POST /predict?model=yolov3-tiny HTTP/1.1" 200 OK
INFO: 127.0.0.1:61009 - "POST /predict?model=yolov3-tiny HTTP/1.1" 200 OK
INFO: 127.0.0.1:61010 - "POST /predict?model=yolov3-tiny HTTP/1.1" 200 OK
INFO: 127.0.0.1:61012 - "POST /predict?model=yolov3-tiny HTTP/1.1" 200 OK
INFO: 127.0.0.1:61084 - "POST /predict?model=yolov3-tiny HTTP/1.1" 200 OK
INFO: 127.0.0.1:61085 - "POST /predict?model=yolov3-tiny HTTP/1.1" 200 OK
INFO: 127.0.0.1:61087 - "POST /predict?model=yolov3-tiny HTTP/1.1" 200 OK
服务启动后可以利用fastAPI内置的客户端来和服务端进行交互,在浏览器输入http://127.0.0.1:8000/docs 即可。当然也可以编写一个Client来与Server交互,保持Server的会话,开启一个新的notebook来编写客户端。
这一小节中,将使用Python的requests库编写一个小型的客户端,调用上文server提供的接口来使用模型进行预测。
import os
import io
import cv2
import requests
import numpy as np
from IPython.display import Image, display
Client需要向Server发出HTTP请求调用相关接口来获得服务。在上文中定义了:
除此之外,还需要向server提供参数model(‘yolov3-tiny’ or ‘yolov3’)指定使用的模型。至此,就可以组装出调用的URL了。
base_url = 'http://127.0.0.1:8000'
endpoint = '/predict'
model = 'yolov3-tiny'
url = base_url + endpoint + '?model=' + model
url
'http://127.0.0.1:8000/predict?model=yolov3-tiny'
上文在Server端定义的接口,是POST类型,因此在Client也将发送POST请求至Server端。定义response_from_server方法,用于发送POST请求,并处理Server返回数据。
def respond_from_server(url, image_file, verbose=True):
files = {'file': image_file}
response = requests.post(url, files=files) # 发出POST请求,并上传需要检测的图片
status_code = response.status_code
if verbose:
msg = 'Everything went well!' if status_code == 200 else \
'There was an error when handling the request.'
print(msg)
return response
接下来可以上传一张图片来测试一下是否能通过response_from_server方法向Server发送请求并收到响应。
with open(‘course1/week1-ungraded-lab/images/clock2.jpg’, ‘rb’) as f:
prediction = respond_from_server(url, f)
既然已经能顺利调用Server端的predict接口,接下来只需要将Server端的目标检测结果保存下来并显示就行了。
首先,创建一个目录用于存放Server返回的结果。
dir_name = 'course1/week1-ungraded-lab/images_predicted'
if not os.path.exists(dir_name):
os.makedirs(dir_name)
接着,定义display_image_from_response方法,用于显示Server检测的结果。
def display_image_from_response(response):
image_stream = io.BytesIO(response.content) # 从响应中提取出字节流
image_stream.seek(0)
file_bytes = np.asarray(bytearray(image_stream.read()), dtype=np.uint8) # 将字节流转为ndarray
image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR) # 解码得到图片
# 保存图片至本地
filename = 'image_with_objects.jpeg'
cv2.imwrite(f'{dir_name}/{filename}', image)
# 显示图片
display(Image(f'{dir_name}/{filename}'))
可以使用上文请求得到的prediction来测试一下该方法。
display_image_from_response(prediction)
图片成功显示。接下来测试另一组图片。
image_files = [
'car2.jpg',
'clock3.jpg',
'apples.jpg'
]
for image_file in image_files:
with open(f'course1/week1-ungraded-lab/images/{image_file}', 'rb') as f:
prediction = respond_from_server(url, f, verbose=False)
display_image_from_response(prediction)
至此,第一个不计分实验就完成了。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。