当前位置:   article > 正文

机器学习之特征工程_机器学习 枚举类型特征

机器学习 枚举类型特征

文:来源于谷歌机器学习速成课

传统编程的关注点是代码。在机器学习项目中,关注点变成了表示。也就是说,开发者通过添加和改善特征来调整模型。

将原始数据映射到特征

图 1 左侧表示来自输入数据源的原始数据,右侧表示特征矢量,也就是组成数据集中样本的浮点值集。 特征工程指的是将原始数据转换为特征矢量进行特征工程预计需要大量时间。

机器学习模型通常期望样本表示为实数矢量。这种矢量的构建方法如下:为每个字段衍生特征,然后将它们全部连接到一起。
这里写图片描述

映射数值

机器学习模型根据浮点值进行训练,因此整数和浮点原始数据不需要特殊编码。正如图 2 所示,将原始整数值 6 转换为特征值 6.0 是没有意义的:
这里写图片描述

映射字符串值

模型无法通过字符串值学习规律,因此您需要进行一些特征工程来将这些值转换为数字形式:
1. 首先,为您要表示的所有特征的字符串值定义一个词汇表。对于 street_name 特征,该词汇表中将包含您知道的所有街道。
注意:所有其他街道都可以归入一个笼统的“其他”类别,该类别称为 OOV(未收录到词汇表中)桶。
2. 然后,使用该词汇表创建一个独热编码,用于将指定字符串值表示为二元矢量。在该矢量(与指定的字符串值对应)中:
o 只有一个元素设为 1。
o 其他所有元素均设为 0。
该矢量的长度等于词汇表中的元素数。
图 3 显示了某条特定街道 (Shorebird Way) 的独热编码。在此二元矢量中,代表 Shorebird Way 的元素的值为 1,而代表所有其他街道的元素的值为 0。
这里写图片描述

映射分类(枚举)值

分类特征具有一组离散的可能值。例如,名为 Lowland Countries 的特征只包含 3 个可能值:
{‘Netherlands’, ‘Belgium’, ‘Luxembourg’}
您可能会将分类特征(如 Lowland Countries)编码为枚举类型或表示不同值的整数离散集。例如:
• 将荷兰表示为 0
• 将比利时表示为 1
• 将卢森堡表示为 2
不过,机器学习模型通常将每个分类特征表示为单独的布尔值。例如,Lowland Countries 在模型中可以表示为 3 个单独的布尔值特征:
• x1:是荷兰吗?
• x2:是比利时吗?
• x3:是卢森堡吗?
采用这种方法编码还可以简化某个值可能属于多个分类这种情况(例如,“与法国接壤”对于比利时和卢森堡来说都是 True)。

良好特征的特点

避免很少使用的离散特征值
良好的特征值应该在数据集中出现大约 5 次以上。这样一来,模型就可以学习该特征值与标签是如何关联的。也就是说,大量离散值相同的样本可让模型有机会了解不同设置中的特征,从而判断何时可以对标签很好地做出预测。

最好具有清晰明确的含义
每个特征对于项目中的任何人来说都应该具有清晰明确的含义。
不要将“神奇”的值与实际数据混为一谈
良好的浮点特征不包含超出范围的异常断点或“神奇”的值。例如,假设一个特征具有 0 到 1 之间的浮点值。

考虑上游不稳定性
特征的定义不应随时间发生变化。例如,下列值是有用的,因为城市名称一般不会改变。

清理数据

缩放特征值

缩放是指将浮点特征值从自然范围(例如 100 到 900)转换为标准范围(例如 0 到 1 或 -1 到 +1)。如果某个特征集只包含一个特征,则缩放可以提供的实际好处微乎其微或根本没有。不过,如果特征集包含多个特征,则缩放特征可以带来以下优势:
• 帮助梯度下降法更快速地收敛。
• 帮助避免“NaN 陷阱”。在这种陷阱中,模型中的一个数值变成 NaN(例如,当某个值在训练期间超出浮点精确率限制时),并且模型中的所有其他数值最终也会因数学运算而变成 NaN。
• 帮助模型为每个特征确定合适的权重。如果没有进行特征缩放,则模型会对范围较大的特征投入过多精力。
您不需要对每个浮点特征进行完全相同的缩放。即使特征 A 的范围是 -1 到 +1,同时特征 B 的范围是 -3 到 +3,也不会产生什么恶劣的影响。不过,如果特征 B 的范围是 5000 到 100000,您的模型会出现糟糕的响应。
这里写图片描述

处理极端离群值

下面的曲线图表示的是加利福尼亚州住房数据集中称为 roomsPerPerson 的特征。roomsPerPerson 值的计算方法是相应地区的房间总数除以相应地区的人口总数。该曲线图显示,在加利福尼亚州的绝大部分地区,人均房间数为 1 到 2 间。不过,请看一下 x 轴。
这里写图片描述

如何最大限度降低这些极端离群值的影响?一种方法是对每个值取对数:
这里写图片描述
对数缩放可稍稍缓解这种影响,但仍然存在离群值这个大尾巴。我们来采用另一种方法。如果我们只是简单地将 roomsPerPerson 的最大值“限制”为某个任意值(比如 4.0),会发生什么情况呢?
这里写图片描述

分箱

下面的曲线图显示了加利福尼亚州不同纬度的房屋相对普及率。注意集群 - 洛杉矶大致在纬度 34 处,旧金山大致在纬度 38 处。
这里写图片描述

在数据集中,latitude 是一个浮点值。不过,在我们的模型中将 latitude 表示为浮点特征没有意义。这是因为纬度和房屋价值之间不存在线性关系。例如,纬度 35 处的房屋并不比纬度 34 处的房屋贵 35/34(或更便宜)。但是,纬度或许能很好地预测房屋价值。
为了将纬度变为一项实用的预测指标,我们对纬度“分箱”,如下图所示:
这里写图片描述

我们现在拥有 11 个不同的布尔值特征(LatitudeBin1、LatitudeBin2、…、LatitudeBin11),而不是一个浮点特征。拥有 11 个不同的特征有点不方便,因此我们将它们统一成一个 11 元素矢量。这样做之后,我们可以将纬度 37.4 表示为:
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
分箱之后,我们的模型现在可以为每个纬度学习完全不同的权重。

清查

截至目前,我们假定用于训练和测试的所有数据都是值得信赖的。在现实生活中,数据集中的很多样本是不可靠的,原因有以下一种或多种:
遗漏值。 例如,有人忘记为某个房屋的年龄输入值。
重复样本。 例如,服务器错误地将同一条记录上传了两次。
不良标签。 例如,有人错误地将一颗橡树的图片标记为枫树。
不良特征值。 例如,有人输入了多余的位数,或者温度计被遗落在太阳底下。
一旦检测到存在这些问题,您通常需要将相应样本从数据集中移除,从而“修正”不良样本。要检测遗漏值或重复样本,您可以编写一个简单的程序。检测不良特征值或标签可能会比较棘手。
除了检测各个不良样本之外,您还必须检测集合中的不良数据。直方图是一种用于可视化集合中数据的很好机制。此外,收集如下统计信息也会有所帮助:
• 最大值和最小值
• 均值和中间值
• 标准偏差
考虑生成离散特征的最常见值列表。例如,country:uk 的样本数是否符合您的预期?language:jp 是否真的应该作为您数据集中的最常用语言?

了解数据

遵循以下规则:
• 记住您预期的数据状态。
• 确认数据是否满足这些预期(或者您可以解释为何数据不满足预期)。
• 仔细检查训练数据是否与其他来源(例如信息中心)的数据一致。
像处理任何任务关键型代码一样谨慎处理您的数据。良好的机器学习依赖于良好的数据。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/酷酷是懒虫/article/detail/988841
推荐阅读
相关标签
  

闽ICP备14008679号