赞
踩
指令微调阶段使用了已标注数据。这个阶段训练的数据集数量不会像预训练阶段那么大,最多可以达到几千万条,最少可以达到几百条到几千条。指令微调可以将预训练的知识“涌现”出来,进行其他类型的任务,如问答类型的任务。一般指令微调阶段对于在具体行业上的应用是必要的,但指令微调阶段一般不能灌注进去新知识,而是将已有知识的能力以某类任务的形式展现出来。
指令微调任务有多种场景,比较常用的有:
上述只是举了几个例子,一般来说距离用户最近的训练方式就是指令微调。
一般来说,LLM中指的base模型是指经过了预训练(以及进行了一部分通用指令的微调)的模型。Chat模型是经过了大量通用数据微调和人类对齐训练的模型。
如何选择base模型和chat模型进行微调呢?
当然,如果硬件允许,建议两个模型都进行尝试,选择效果较好的。需要注意的是,chat模型有其独特的输入格式,在微调时一定要遵循。base模型的输入格式一般比较简单(但也需要遵守该格式),而且一般该格式不支持多轮数据集。
如果需要用base模型训练多轮对话,一般需要使用一个支持多轮对话的template。在SWIFT中,可以指定为
default
,在训练时只需要指定–template_type default即可。
训练有很多超参数,它们的含义和设置技巧可以参考这里。
由于较大模型可能在单张显卡上显存溢出,或者训练速度不够,因此单机多卡或多机多卡训练是必要的。在训练过程中的分布式训练有以下几种模式:
LoRA是一个非常重要的可调优结构,简单来说,就是增加了一个额外可训练部分,比如原来的Linear的矩阵是MxN维,增加一个LoRA,该LoRA会包含两个参数量较少的矩阵:Mxd, dxN,这两个矩阵相乘后仍然是MxN维的,训练时原MxN矩阵冻结,只训练LoRA的两个矩阵,参数量就会大大减少。
为什么模型本身的矩阵不使用这种形式?
一般大规模矩阵的非零特征值数量会远远小于矩阵的维度,这个非零特征值的数量叫做矩阵的秩(rank),秩决定了这个矩阵如何影响被乘的向量,为0或较小的特征值对传入tensor的影响也比较小,丢弃这些信息对精度的影响不大。
一个模型包含了多个大矩阵,这些大矩阵的秩不相等而且难以预测,因此不能对原模型应用LoRA,但在sft时使用LoRA相对安全,虽然有精度损失,但可以使一个大模型在一个消费级显卡上进行训练。
也就是说,LoRA的原理是假设所有矩阵的秩都是d,进行了一定的有损压缩。基于LoRA也有很多升级版技术,如AdaLoRA、SoRA等,这些组件方案都是基于LoRA,对不同算子的LoRA的rank进行动态调节以达到更好的效果。
LoRA目前已经是训练SD模型和LLM模型的最常用技术。LoRA的weights也非常小,只有几十兆,因此加载和使用都非常方便,且LoRA本身可以合并回原模型,推理时可以做到兼容原模型结构。
如果涉及到对模型的知识编辑,比如自我认知任务,LoRA的目标module一般需要设置为
ALL
,因为MLP层对模型的知识获取是至关重要的,需要参与训练过程。
在前序的文章中,我们讲述了如何进行数据的前处理。结合上面讲解的基本概念,我们就可以运行一个完整的训练过程。
代码语言:javascript
复制
pip install ms-swift -U
安装好SWIFT后,可以直接启动界面运行训练和推理:
代码语言:javascript
复制
swift web-ui
在框架中,一个最小的训练过程代码如下:
代码语言:javascript
复制
#Experimental environment: A10, 3090, V100, ... #20GB GPU memory import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' import torch from swift.llm import ( DatasetName, InferArguments, ModelType, SftArguments, infer_main, sft_main, app_ui_main, merge_lora_main ) model_type = ModelType.qwen_1_8b sft_args = SftArguments( model_type=model_type, train_dataset_sample=2000, dataset=[DatasetName.blossom_math_zh], output_dir='output') result = sft_main(sft_args) best_model_checkpoint = result['best_model_checkpoint'] print(f'best_model_checkpoint: {best_model_checkpoint}') torch.cuda.empty_cache() infer_args = InferArguments( ckpt_dir=best_model_checkpoint, load_dataset_config=True, show_dataset_sample=10) #merge_lora_main(infer_args) result = infer_main(infer_args) torch.cuda.empty_cache() app_ui_main(infer_args)
上面我们构建了一个最小的训练和推理流程。大多数时候开发者需要自定义一个训练流程和对应的数据集。在这种情况可以参考下面的步骤:
代码语言:javascript
复制
CUDA_VISIBLE_DEVICES=0 \
swift sft \
--model_id_or_path qwen/Qwen-7B-Chat \
--dataset blossom-math-zh \
--output_dir output \
注意命令行具有很多可调节参数,可以查看文档来查看这些参数的具体意义。
如果想要了解训练流程可以查看训练代码
了解超参数的拼接和处理可以查看超参数的处理代码
了解所有支持的模板可以查看模板的拼接
代码语言:javascript
复制
CUDA_VISIBLE_DEVICES=0 \
swift sft \
--model_id_or_path qwen/Qwen-7B-Chat \
--dataset blossom-math-zh \
--output_dir output \
--custom_train_dataset_path xxx.jsonl zzz.jsonl \
--custom_val_dataset_path yyy.jsonl aaa.jsonl \
LISA是Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning的简写。这个技术可以把全参训练的显存使用降低到之前的三分之一左右,而使用的技术方法却是非常简单的。例如,全参训练一个7b模型大约需要80G显存(相当于一张完整的A100显卡),但使用LISA训练后却可以使显存降低到30G左右,这使得使用40G A100显卡甚至是24G A10或者RTX 3090成为可能,且它的显存占用更低、训练速度更快。
论文地址:https://arxiv.org/abs/2403.17919
LISA使用的技术原理相对简单。作者首先对LoRA训练和全参训练每个layer不同step时的L2范数的平均和进行了对比,结果如下:
作者训练了GPT2和LLaMA-2-7B两个模型,发现它们自身不同layers的parameters的LoRA训练和全参训练的L2范数不同,可以间接说明LoRA训练中由于低秩矩阵的存在,因此其参数更新的重点和全参数更新重点完全不同。可以看出,在权重更新时,除底层和顶层外其它层的L2范数都较小,因此作者假设可以在全参数训练时通过冻结大部分层的参数来模拟LoRA更新的行为,使其最后的参数迭代范数达到类似的效果。
完整的算法迭代可以用下图表示:
在官方实验中,作者对比了LISA和LoRA训练以及全参数的显存占用:
![img]
可以看到LISA的显存占用要小于LoRA。在训练速度上面:
官方实验结果,LISA的Forward和Backward时间要显著短于LoRA训练。在训练方面,作者进行不同尺寸的微调和大规模微调,均证明了LISA的效果要强于LoRA:
如何调节LISA的超参数呢?LISA的超参数包含两个值:
消融实验对这两个值的对比如下:
可以看到LISA的性能在γ=8,采样频率K=5的时候达到最好。作者也证明,LISA对于不同的随机种子的鲁棒性很强,在此不列举表格。
为了验证LISA在实际测试中的效果,我们对LISA进行了一定的实验。我们使用了魔搭社区提供的SWIFT框架(https://github.com/modelscope/swift),该框架支持LISA训练方式,且支持LoRA等通用训练方式。我们可以设置LISA的两个值:
我们使用如下命令进行训练:
代码语言:javascript
复制
#pip install ms-swift -U sft.py \ --model_type qwen-7b-chat \ --dataset ms-agent \ --train_dataset_mix_ratio 2.0 \ --batch_size 1 \ --max_length 2048 \ --use_loss_scale True \ --gradient_accumulation_steps 16 \ --learning_rate 5e-05 \ --use_flash_attn True \ --eval_steps 2000 \ --save_steps 2000 \ --train_dataset_sample -1 \ --val_dataset_sample 5000 \ --num_train_epochs 2 \ --check_dataset_strategy none \ --gradient_checkpointing True \ --weight_decay 0.01 \ --warmup_ratio 0.03 \ --save_total_limit 2 \ --logging_steps 10 \ --sft_type full \ --lisa_activated_layers 2 \ --lisa_step_interval 20
同时,我们将–lisa_activated_layers置为0,进行全参数训练,并且使用r=8进行了LoRA训练,得到的效果如下:
exp_name | model_type | dataset | tuner | tuner_params | trainable params(M) | flash_attn | gradient_checkpointing | hypers | memory | train speed(samples/s) | train_loss | eval_loss | gsm8k weighted acc | arc weighted acc | ceval weighted acc |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
full | qwen-7b-chat | ms-agent | full | 7721.3245(100.0000%) | True | True | lr=5e-05/epoch=2 | 73.53GiB | 1.43(87543 samples/61022.97 seconds) | 0.54 | 0.95 | 0.343 | 0.536 | 0.495 | |
full+lisa_2 | qwen-7b-chat | ms-agent | full | lisa_activated_layers=2/lisa_step_interval=20 | 7721.3245(100.0000%) | True | True | lr=5e-05/epoch=2 | 31.11GiB | 2.66(76837 samples/28881.28 seconds) | 0.62 | 1.06 | 0.349 | 0.653 | 0.592 |
full+lisa_4 | qwen-7b-chat | ms-agent | full | lisa_activated_layers=4/lisa_step_interval=20 | 7721.3245(100.0000%) | True | True | lr=5e-05/epoch=2 | 31.87GiB | 2.63(76837 samples/29215.15 seconds) | 0.63 | 1.06 | 0.377 | 0.656 | 0.607 |
lora | qwen-7b-chat | ms-agent | lora | rank=8/target=ALL/alpha=32/lr_ratio=None/use_rslora=False/use_dora=False | 17.8913(0.2312%) | True | True | lr=5e-05/epoch=2 | 32.35GiB | 0.95(87543 samples/91974.29 seconds) | 0.53 | 1.01 | 0.462 | 0.676 | 0.304 |
从我们的实验中可以看到下面的结论:
LISA lisa_activated_layers=2 训练的loss
LoRA r=8 训练的loss
可以观察到LISA的训练loss较LoRA曲线更为抖动一些,猜测可能是LISA随机挑选layer进行反向传播的随机性造成的。
可以看到LISA作为2024年的新晋tuner,使用一个非常简单的方式做到了部分数据集的SOTA,同时显存使用和训练速度也是很优秀的,且没有额外的使用条件。然而LISA仍然存在着一些可以分析讨论的问题,比如:是否可以通过参数范数或者参数矩阵特征值判断哪些layers应该被反向传播?或者是否可以在更细粒度上(qkv/mlp/layernorm)层面上控制反向传播?如果有做过实验的同学欢迎留言讨论。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。