赞
踩
import numpy as np
import numpy as np
设置隐藏状态:3个盒子
states = ["box1","box2","box3"]
n_states = len(states)
设置观测状态:红白两种球
observations = ["red","white"]
n_observations = len(observations)
设置模型参数:
start_probability = np.array([0.2,0.4,0.4]) # 初始矩阵 π
transition_probability = np.array([
[0.5,0.2,0.3],
[0.3,0.5,0.2],
[0.2,0.3,0.5]
]) # A 矩阵 ,隐藏状态的状态转移矩阵
emission_probability = np.array([
[0.5,0.5],
[0.4,0.6],
[0.7,0.3]
]) # B 隐藏状态生成观测矩阵
建模
# 用于离散观测状态
model = hmm.MultinomialHMM(n_components=n_states) #设置隐藏状态个数
model.startprob_ = start_probability #设置π
model.transmat_ = transition_probability #设置A
model.emissionprob_ = emission_probability #设置B
维特比算法,观测序列是[0,1,0] (红,白,红) 求解隐藏序列的最大可能性
seen =np.array([[0,1,0]]).T
logprob,box = model.decode(seen,algorithm="viterbi")
得到的结果和之前算的是一样的
print(np.array(states)[box])
['box3' 'box3' 'box3']
predict也可以
box2 = model.predict(seen)
print(np.array(states)[box2])
['box3' 'box3' 'box3']
得到观测序列的概率:In0.13022=-2.0385
print(model.score(seen))
-2.038545309915233
tol:停机阈值n_iter :最大迭代次数n_components :隐藏状态数目
model2 = hmm. MultinomialHMM(n_components=n_states,n_iter=20,tol=0.01)
X2 =np. array([[o, 1, 0,1],[o, 0, 0, 1],[1,0,1,1]])
mode12.fit(X2)
print ('startprob_' , mode12.startprob_)
print('----')
print('transmat_' , model2.transmat_)
print ('------------—--')
print (emissionprob_' , mode12. emissionprob_)
print('--------------------—-------------------')
print ('score' , model2.score(X2))
观测:这几个字就是观测结果
状态:画/ 是1,不花/ 是0 ,每个词要不要分开。
##{B(词开头),M(词中),E(词尾),S(独字词)}{0,1,2,3}
data=[{
u"我要吃饭": "SSBE"},
{
u"天气不错":"BEBE"},
{
u"谢天谢地":"BMME"}]
#O:观察对象的集合,这里是字的集合,{我要吃饭天气不错谢天地}
#S:隐藏状态集合,这里是{BMES}
现在已经知道观测和状态序列,可以求解出来模型参数
import numpy as np import warnings from hmmlearn.hmm import MultinomialHMM as mhmm data=[{ u"我要吃饭":"SSBE"}, { u"天气不错" : "BEBE"}, { u"谢天谢地" : "BMME"}] def prints(s): pass print(s) def get_startprob(): """get BMES matrix """ c=0 c_map={"B":0,"M":0,"E":0,"S":0} #caculate the count for v in data : for key in v : value=v[key] c=c+1 prints("value[0] is "+value[0]) c_map[value[0]]=c_map[value[0]] +1 prints("c_map[value[0]] is "+str(c_map[value[0]]) ) res=[] for i in "BMES": res.append( c_map[i] / float(c)) return res def get_transmat(): """get transmat of status """ c=0 #record BE:1,BB:2 c_map={} for v in data : for key in v : value=v[key] prints("value[0] is "+value[0]) for v_i in range(len(value)-1): couple=value[v_i:v_i+2] c_couple_source = c_map.get(couple,0) c_map[couple]=c_couple_source+1 c=c+1 #c_map[value[0]]=c_map[value[0]] +1 #prints("c_map[value[0]] is "+str(c_map[value[0]]) ) prints("get_transmat's c_map is "+str(c_map)) res=[] for i in "BMES": col=[] col_count=0 for j in "BMES": col_count=c_map.get(i+j,0)+col_count for j in "BMES": col.append( c_map.get(i+j,0) / float(col_count)) res.append(col) return res def get_words(): return u"我要吃饭天气不错谢天地" def get_word_map(): words=get_words() res={} for i in range(len(words)): res[words[i]]=i return res def get_array_from_phase(phase): word_map=get_word_map() res=[] for key in phase: res.append(word_map[key]) return res def get_emissionprob(): #get emmissionprob of status and observers c=0 #record Bc=0 #record B我:1,B吃:2 c_map={} for v in data : for key in v : k=key value=v[key] prints("value[0] is "+value[0]) for v_i in range(len(value)): couple=value[v_i]+k[v_i] prints("emmition's couple is " + couple) c_couple_source = c_map.get(couple,0) c_map[couple]=c_couple_source+1 c=c+1 res=[] prints("emmition's c_map is "+str(c_map)) words=get_words() for i in "BMES": col=[] for j in words: col.append( c_map.get(i+j,0) / float(c)) res.append(col) return res if( __name__ == "__main__"): # print("startprob is ",get_startprob()) # print("transmat is " ,get_transmat()) print("emissionprob is " , get_emissionprob()) print("word map is ",get_word_map()) # coding=utf-8 warnings.filterwarnings("ignore") # import matplotlib.pyplot as plt startprob = np.array(get_startprob()) print("startprob is ", startprob) transmat = np.array(get_transmat()) print("transmat is ", transmat) emissionprob = np.array(get_emissionprob()) print("emmissionprob is ", emissionprob) mul_hmm = mhmm(n_components=4) mul_hmm.startprob_ = startprob mul_hmm.transmat_ = transmat mul_hmm.emissionprob_ = emissionprob phase = u"我要吃饭谢天谢地" X = np.array(get_array_from_phase(phase)) X = X.reshape(len(phase), 1) print("X is ", X) Y = mul_hmm.predict(X) print("Y is ", Y) # {B(词开头),M(词中),E(词尾),S(独字词)} {0,1,2,3}
value[0] is S emmition's couple is S我 emmition's couple is S要 emmition's couple is B吃 emmition's couple is E饭 value[0] is B emmition's couple is B天 emmition's couple is E气 emmition's couple is B不 emmition's couple is E错 value[0] is B emmition's couple is B谢 emmition's couple is M天 emmition's couple is M谢 emmition's couple is E地 emmition's c_map is {'S我': 1, 'S要': 1, 'B吃': 1, 'E饭': 1, 'B天': 1, 'E气': 1, 'B不': 1, 'E错': 1, 'B谢': 1, 'M天': 1, 'M谢': 1, 'E地': 1} emissionprob is [[0.0, 0.0, 0.08333333333333333, 0.0, 0.08333333333333333, 0.0, 0.08333333333333333, 0.0, 0.08333333333333333, 0.08333333333333333, 0.0], [0.0, 0.0, 0.0, 0.0, 0.08333333333333333, 0.0, 0.0, 0.0, 0.08333333333333333, 0.08333333333333333, 0.0], [0.0, 0.0, 0.0, 0.08333333333333333, 0.0, 0.08333333333333333, 0.0, 0.08333333333333333, 0.0, 0.0, 0.08333333333333333], [0.08333333333333333, 0.08333333333333333, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]] word map is {'我': 0, '要': 1, '吃': 2, '饭': 3, '天': 9, '气': 5, '不': 6, '错': 7, '谢': 8, '地': 10} value[0] is S c_map[value[0]] is 1 value[0] is B c_map[value[0]] is 1 value[0] is B c_map[value[0]] is 2 startprob is [0.66666667 0. 0. 0.33333333] value[0] is S value[0] is B value[0] is B get_transmat's c_map is {'SS': 1, 'SB': 1, 'BE': 3, 'EB': 1, 'BM': 1, 'MM': 1, 'ME': 1} transmat is [[0. 0.25 0.75 0. ] [0. 0.5 0.5 0. ] [1. 0. 0. 0. ] [0.5 0. 0. 0.5 ]] value[0] is S emmition's couple is S我 emmition's couple is S要 emmition's couple is B吃 emmition's couple is E饭 value[0] is B emmition's couple is B天 emmition's couple is E气 emmition's couple is B不 emmition's couple is E错 value[0] is B emmition's couple is B谢 emmition's couple is M天 emmition's couple is M谢 emmition's couple is E地 emmition's c_map is {'S我': 1, 'S要': 1, 'B吃': 1, 'E饭': 1, 'B天': 1, 'E气': 1, 'B不': 1, 'E错': 1, 'B谢': 1, 'M天': 1, 'M谢': 1, 'E地': 1} emmissionprob is [[0. 0. 0.08333333 0. 0.08333333 0. 0.08333333 0. 0.08333333 0.08333333 0. ] [0. 0. 0. 0. 0.08333333 0. 0. 0. 0.08333333 0.08333333 0. ] [0. 0. 0. 0.08333333 0. 0.08333333 0. 0.08333333 0. 0. 0.08333333] [0.08333333 0.08333333 0. 0. 0. 0. 0. 0. 0. 0. 0. ]] X is [[ 0] [ 1] [ 2] [ 3] [ 8] [ 9] [ 8] [10]] Y is [3 3 0 2 0 1 1 2] Process finished with exit code 0
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。