当前位置:   article > 正文

搜索和二叉树(动图解析)_常见的查找算法动图

常见的查找算法动图

搜索

搜索是在一个项目集合中找到一个特定项目的算法过程。搜索通常的答案是真的或假的,因为该项目是否存在。 搜索的几种常见方法:顺序查找、二分法查找、二叉树查找、哈希查找。

二分法查找

首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

算法分析

在这里插入图片描述

// An highlighted block
'''递归实现,产生新的数组进行查找'''
def binary_search(alist, item):
    n=len(alist)
    if n>0:
        midpoint = n//2
        if alist[midpoint]==item:
          return True
        else:
        # 调用binary_search实现递归,再次查找
          if item<alist[midpoint]:
            return binary_search(alist[:midpoint],item)
          else:
            return binary_search(alist[midpoint+1:],item)

testlist = [5,7,11,13,20,30,65]
print("递归实现")
print(binary_search(testlist, 3))
print(binary_search(testlist, 13))

'''非递归实现,在原本的数组中查找'''
def binary_search(alist, item):
    first = 0
    last = len(alist) - 1
    while first <= last:
        midpoint = (first + last) //2
        #按重点值左右查找
        if alist[midpoint] == item:
            return True
        elif item < alist[midpoint]:
            last = midpoint - 1
        else:
            first = midpoint + 1
    return False
testlist = [5,7,11,13,20,30,65]
print("非递归实现")
print(binary_search(testlist, 3))
print(binary_search(testlist, 13))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

在这里插入图片描述
二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。

时间复杂度

最优时间复杂度:O(1)
最坏时间复杂度:O(logn)

树与树算法

树(英语:tree)是一种**抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,**用来模拟具有树状结构性质的数据集合。它是由n(n>=1)个有限节点组成一个具有层次关系的集合。
在这里插入图片描述
特点:
每个节点有零个或多个子节点;
没有父节点的节点称为根节点;
每一个非根节点有且只有一个父节点;
除了根节点外,每个子节点可以分为多个不相交的子树;

树的种类

无序树

树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树;

有序树

树中任意节点的子节点之间有顺序关系,这种树称为有序树;

  1. 二叉树:每个节点最多含有两个子树的树称为二叉树;
    完全二叉树:对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值,且第d层所有节点从左向右连续地紧密排列,这样的二叉树被称为完全二叉树,其中满二叉树的定义是所有叶节点都在最底层的完全二叉树。
    在这里插入图片描述
    满二叉树:除了叶节点以外,每个节点都有左右子叶,并且叶子节点都处在最低层的二叉树
    在这里插入图片描述
    平衡二叉树(AVL树):当且仅当任何节点的两棵子树的高度差不大于1的二叉树。
    在这里插入图片描述

排序二叉树(二叉查找树(英语:Binary Search Tree),也称二叉搜索树、有序二叉树);
在这里插入图片描述
2. 霍夫曼树(用于信息编码):带权路径最短的二叉树称为哈夫曼树或最优二叉树;
3. B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多余两个子树。

二叉树

二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。

二叉树的性质(特性)

性质1: 在二叉树的第i层上至多有2^(i-1)个结点(i>0)
性质2: 深度为k的二叉树至多有2^k - 1个结点(k>0)
性质3: 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;
性质4:具有n个结点的完全二叉树的深度必为 log2(n+1)
性质5:对完全二叉树,若从上至下、从左至右编号,则编号为i 的结点,其左孩子编号必为2i,其右孩子编号必为2i+1;其双亲的编号必为i/2(i=1 时为根,除外)

二叉树的遍历

树的遍历是树的一种重要的运算。所谓遍历是指对树中所有结点的信息的访问,即依次对树中每个结点访问一次且仅访问一次,我们把这种对所有节点的访问称为遍历(traversal)。那么树的两种重要的遍历模式是深度优先遍历和广度优先遍历,深度优先一般用递归,广度优先一般用队列。一般情况下能用递归实现的算法大部分也能用堆栈来实现。

广度优先遍历

从树的root开始,从上到下从从左到右遍历整个树的节点。
在这里插入图片描述

// An highlighted block
class Node(object):
    """节点类"""
    def __init__(self, item):
        self.elem = item
        self.lchild = None   #设为左边的孩子
        self.rchild = None   #设为右边的孩子
"""二叉树"""
class Tree(object):
    def __init__(self):
        self.root = None

    """为树添加节点"""
    def add(self, item):
        node = Node(item)            #构建节点
        #如果树是空的,则对根节点赋值
        if self.root == None:
            self.root = node
            return
        queue=[self.root]
        while queue:
            #弹出队列的第一个元素
            cur_node = queue.pop(0)
            #如果左边的孩子是否为空,为空,则进行赋值
            #判断左边的孩子是否为空,不为空,则对下一个进行判断
            if cur_node.lchild == None:
                cur_node.lchild = node
                return
            else:
                queue.append(cur_node.lchild)
                # 如果右边的孩子是否为空,为空,则进行赋值
                # 判断右边的孩子是否为空,不为空,则对下一个进行判断
            if  cur_node.rchild == None:
                cur_node.rchild = node
                return
            else:
                #如果左右子树都不为空,加入队列继续判断
                queue.append(cur_node.rchild)
    '''广度遍历'''
    def breadth_travel(self):
        if self.root is None:
            return
        queue = [self.root]
        while queue:
            cur_node=queue.pop(0)
            print(cur_node.elem)
            if cur_node.lchild is not None:
                queue.append(cur_node.lchild)
            if cur_node.rchild is not None:
                queue.append(cur_node.rchild)
if __name__=="__main__":
    tree=Tree()
    tree.add(1)
    tree.add(2)
    tree.add(3)
    tree.add(4)
    tree.add(5)
    tree.breadth_travel()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58

在这里插入图片描述

深度优先遍历

对于一颗二叉树,深度优先搜索(Depth First Search)是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。
那么深度遍历有重要的三种方法。这三种方式常被用于访问树的节点,它们之间的不同在于访问每个节点的次序不同。这三种遍历分别叫做先序遍历(preorder),中序遍历(inorder)和后序遍历(postorder)。
在这里插入图片描述

先序遍历

根节点->左子树->右子树

// An highlighted block
 """递归实现先序遍历"""
 def preorder(self, root):
        if root == None:
            return
        print(root.elem,end="\t")
        self.preorder(root.lchild)
        self.preorder(root.rchild)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述

中序遍历

左子树->根节点->右子树

  """递归实现中序遍历"""
 def inorder(self, root):
        if root == None:
            return
        self.inorder(root.lchild)
        print(root.elem,end="\t")
        self.inorder(root.rchild)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

在这里插入图片描述

后序遍历

左子树->右子树->根节点

// An highlighted block
  """递归实现后续遍历"""
def postorder(self, root):
      if root == None:
          return
      self.postorder(root.lchild)
      self.postorder(root.rchild)
      pprint(root.elem,end="\t")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述

二叉树由遍历确定一棵树

先序遍历 0137849256 规则:根左右
中序遍历 7381940526 规则:左根右

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/黑客灵魂/article/detail/783380
推荐阅读
相关标签
  

闽ICP备14008679号