赞
踩
损失函数:预测值与已知答案之间的差距
NN优化目标:loss最小{mse, 自定义, ce)
均方误差tensorflow实现,loss_mse = tf.reduce_mean(tf.sqrue(y_-y)
预测酸奶日销量,y,x1, x2是影响日销量的因素
建模前,应预先采集每日x1,x2,和效率y
拟造数据集x,y:y_=x1 + x2 ,噪声 -0.05-+0.05
- import tensorflow as tf
- import numpy as np
-
- SEED = 2345
-
- rdm = np.random.RandomState()
- x = rdm.rand(32,2) # 生成32行两列之间的数字
- y_ = [[x1 + x2 + (rdm.rand()/10.0 - 0.05)] for (x1, x2) in x] #0.1-0.05=0.005
- x = tf.cast(x, dtype=tf.float32)
- # 随机初始化w1(2,1)
- w1 = tf.Variable(tf.random.normal([2, 1], stddev = 1, seed = 1))
- epoch = 15000
- lr = 0.002
-
- for epoch in range(epoch):
- with tf.GradientTape() as tape:
- y = tf.matmul(x, w1)
- loss_mse = tf.reduce_mean(tf.square(y_ - y))
- grads = tape.gradient(loss_mse, w1)
- w1.assign_sub(lr * grads) #更新参数
使用均方误差,预测多和预测少是一样的
预测多了,损失成本,预测少了,损失利润,利润不等于成本
自定义损失函数 loss(y_, y) =
- import tensorflow as tf
- import numpy as np
-
- SEED = 23455
- COST = 1
- PROFIT = 99
-
- rdm = np.random.RandomState(SEED)
- x = rdm.rand(32, 2)
- y_ = [[x1 + x2 + (rdm.rand() / 10.0 - 0.05)] for (x1, x2) in x] # 生成噪声[0,1)/10=[0,0.1); [0,0.1)-0.05=[-0.05,0.05)
- x = tf.cast(x, dtype=tf.float32)
-
- w1 = tf.Variable(tf.random.normal([2, 1], stddev=1, seed=1))
-
- epoch = 10000
- lr = 0.002
-
- for epoch in range(epoch):
- with tf.GradientTape() as tape:
- y = tf.matmul(x, w1)
- loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_) * COST, (y_ - y) * PROFIT))
-
- grads = tape.gradient(loss, w1)
- w1.assign_sub(lr * grads)
-
- if epoch % 500 == 0:
- print("After %d training steps,w1 is " % (epoch))
- print(w1.numpy(), "\n")
- print("Final w1 is: ", w1.numpy())
-
- # 自定义损失函数
- # 酸奶成本1元, 酸奶利润99元
- # 成本很低,利润很高,人们希望多预测些,生成模型系数大于1,往多了预测
交叉熵
交叉熵可以表示两个概率分布之间的距离
例如 二分类,已知答案y_(1, 0) 预测 y1(0.6, 0.4), y2=(0.8, 0.2), 那个答案接近标准答案
代码实现, tf.losses.categorical_crossentropy(y_,y)
- import tensorflow as tf
-
- loss_ce1 = tf.losses.categorical_crossentropy([1, 0], [0.6, 0.4])
- loss_ce2 = tf.losses.categorical_crossentropy([1, 0], [0.8, 0.2])
- print("loss_ce1:", loss_ce1)
- print("loss_ce2:", loss_ce2)
sotfmax与交叉熵结合
tf.nn.sotfmax_cross_entropy_with_logits(y_, y)
例子:
- # softmax与交叉熵损失函数的结合
- import tensorflow as tf
- import numpy as np
-
- y_ = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 1, 0]])
- y = np.array([[12, 3, 2], [3, 10, 1], [1, 2, 5], [4, 6.5, 1.2], [3, 6, 1]])
- y_pro = tf.nn.softmax(y)
- loss_ce1 = tf.losses.categorical_crossentropy(y_,y_pro)
- loss_ce2 = tf.nn.softmax_cross_entropy_with_logits(y_, y)
-
- print('分步计算的结果:\n', loss_ce1)
- print('结合计算的结果:\n', loss_ce2)
-
-
- # 输出的结果相同
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。