当前位置:   article > 正文

IROS 2022 | 自动驾驶感知/定位/融合/规划方向论文汇总!

iros论文

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

点击进入→自动驾驶之心技术交流群

后台回复【IROS2022】获取IROS2022所有自动驾驶方向论文!                       

SLAM

  • PFilter: Building Persistent Maps through Feature Filtering for Fast and Accurate LiDAR-based SLAM

  • Learning to Complete Object Shapes for Object-level Mapping in Dynamic Scenes

  • Visual-Inertial Multi-Instance Dynamic SLAM with Object-level Relocalisation

  • Dense RGB-D-Inertial SLAM with Map Deformations

  • Hybrid Belief Pruning with Guarantees for Viewpoint-Dependent Semantic SLAM

  • Challenges of SLAM in extremely unstructured environments: the DLR Planetary Stereo, Solid-State LiDAR, Inertial Dataset

  • Distributed Ranging SLAM for Multiple Robots with Ultra-WideBand and Odometry Measurements

  • Keeping Less is More: Point Sparsification for Visual SLAM

  • Loop Closure Prioritization for Efficient and Scalable Multi-Robot SLAM

  • Tracking monocular camera pose and deformation for SLAM inside the human body

  • Spectral Measurement Sparsification for Pose-Graph SLAM

  • Probabilistic Data Association for Semantic SLAM at Scale

  • Are We Ready for Robust and Resilient SLAM? A Framework For Quantitative Characterization of SLAM Datasets

规划控制

  • Monte-Carlo Robot Path Planning

  • Quantifying Safety of Learning-based Self-Driving Control Using Almost-Barrier Functions

  • Physics Embedded Neural Network Vehicle Model and Applications in Risk-Aware Autonomous Driving Using Latent Features

  • Efficient Game-Theoretic Planning with Prediction Heuristic for Socially-Compliant Autonomous Driving

姿态估计

  • SSP-Pose: Symmetry-Aware Shape Prior Deformation for Direct Category-Level Object Pose Estimation

  • MV6D: Multi-View 6D Pose Estimation on RGB-D Frames Using a Deep Point-wise Voting Network

  • Level Set-Based Camera Pose Estimation From Multiple 2D/3D Ellipse-Ellipsoid Correspondences

  • CA-SpaceNet: Counterfactual Analysis for 6D Pose Estimation in Space

  • Adversarial Attacks on Monocular Pose Estimation

  • SDFEst: Categorical Pose and Shape Estimation of Objects from RGB-D using Signed Distance Fields

  • BoxGraph: Semantic Place Recognition and Pose Estimation from 3D LiDAR

多模态融合

  • MMFN: Multi-Modal-Fusion-Net for End-to-End Driving

  • Grounding Commands for Autonomous Vehicles via Layer Fusion with Region-specific Dynamic Layer Attention

自动驾驶测试

  • How Do We Fail? Stress Testing Perception in Autonomous Vehicles

3D目标检测

  • CVFNet: Real-time 3D Object Detection by Learning Cross View Features

  • Towards Safe, Real-Time Systems: Stereo vs Images and LiDAR for 3D Object Detection

单目深度估计

  • Learning Feature Decomposition for Domain Adaptive Monocular Depth Estimation

  • Instance-aware multi-object self-supervision for monocular depth prediction

目标跟踪

  • Learning Moving-Object Tracking with FMCW LiDAR

语义分割

  • LapSeg3D: Weakly Supervised Semantic Segmentation of Point Clouds Representing Laparoscopic Scenes

  • COLA: COarse LAbel pre-training for 3D semantic segmentation of sparse LiDAR datasets

  • Instance Segmentation for Autonomous Log Grasping in Forestry Operations

3D运动目标分割

  • Efficient Spatial-Temporal Information Fusionfor LiDAR-Based 3D Moving Object Segmentation

里程计

  • LF-VIO: A Visual-Inertial-Odometry Framework for Large Field-of-View Cameras with Negative Plane

  • Continuous-time Radar-inertial Odometry for Automotive Radars

  • Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online LiDAR Odometry

  • FAST-LIVO: Fast and Tightly-coupled Sparse-Direct LiDAR-Inertial-Visual Odometry

  • Scale-aware direct monocular odometry

位置识别

  • OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition

  • STUN: Self-Teaching Uncertainty Estimation for Place Recognition

  • Object Scan Context: Object-centric Spatial Descriptor for Place Recognition within 3D Point Cloud Map

强化学习

  • State Dropout-Based Curriculum Reinforcement Learning for Self-Driving at Unsignalized Intersections

自动驾驶之心】全栈技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、多传感器融合、SLAM、光流估计、轨迹预测、高精地图、规划控制、AI模型部署落地等方向;

加入我们:自动驾驶之心技术交流群汇总!

自动驾驶之心【知识星球】

想要了解更多自动驾驶感知(分类、检测、分割、关键点、车道线、3D目标检测、多传感器融合、目标跟踪、光流估计、轨迹预测)、自动驾驶定位建图(SLAM、高精地图)、自动驾驶规划控制、领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球(三天内无条件退款),日常分享论文+代码,这里汇聚行业和学术界大佬,前沿技术方向尽在掌握中,期待交流!

e9adc598dfb7b7ccfaf1d60afc5a1192.jpeg

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/黑客灵魂/article/detail/890209
推荐阅读
相关标签
  

闽ICP备14008679号