People(arr(0),arr(1).trim.toInt))rdd.toDF出现错误:value toDF is not a member of org.apa_value todf is not a member of org.apache.spark.rdd.rdd">
赞
踩
编译如下代码时
val rdd : RDD[People]= sparkSession.sparkContext.textFile(hdfsFile,2).map(line => line.split(",")).map(arr => People(arr(0),arr(1).trim.toInt))
rdd.toDF
出现错误:
value toDF is not a member of org.apache.Spark.rdd.RDD[People]
参考http://stackoverflow.com/questions/33704831/value-todf-is-not-a-member-of-org-apache-spark-rdd-rdd,针对此错误有人提出需要做到以下两点:
import sqlContext.implicits._ 语句需要放在获取sqlContext对象的语句之后
case class People(name : String, age : Int) 的定义需要放在方法的作用域之外(即Java的成员变量位置)
实际上只需要做到第二点即可解决错误,如下
import org.apache.spark.{SparkContext, SparkConf}
object sqltest2 {
case class Person(name: String, age: Int)
def main(args: Array[String]) {
println("I Love You Scala")
System.setProperty("hadoop.home.dir", "E:\\bigdataTools\\hadoop\\hadoop-2.6.0\\hadoop-2.6.0")
val conf = new SparkConf().setMaster("local").setAppName("wordCount")
val sc = new SparkContext(conf)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
// Define the schema using a case class.
// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
// you can use custom classes that implement the Product interface.
// Create an RDD of Person objects and register it as a table.
val people = sc.textFile("E:\\testData\\spark\\spark1.6\\people.txt").map(_.split(",")).map(p => Person(p(0).trim.toString, p(1).trim.toInt)).toDF()
people.registerTempTable("people")
// SQL statements can be run by using the sql methods provided by sqlContext.
val teenagers = sqlContext.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")
// The results of SQL queries are DataFrames and support all the normal RDD operations.
// The columns of a row in the result can be accessed by field index:
teenagers.map(t => "Name: " + t(0)).collect().foreach(println)
// or by field name:
teenagers.map(t => "Name: " + t.getAs[String]("name")).collect().foreach(println)
// row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]
//teenagers.map(_.getValuesMap[Any](List("name", "age"))).collect().foreach(println)
}
}
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。