赞
踩
缓存是就是建立在内存之上的,内存天然就支撑高并发。而数据库查询是走硬盘的,内存的访问速度比内存快很多,通常来说是内存的访问速度是纳秒级的,而硬盘的访问速度是微秒级的,相差了 10 万倍左右。
由于redis缓存数据库的读写都是在内存中,所以它的性能才会高,但在内存中的数据会随着服务器的重启而丢失,为了保证数据不丢失,要把内存中的数据存储到磁盘,以便缓存服务器重启之后,还能够从磁盘中恢复原有的数据,这个过程就是 Redis 的数据持久化。
这也是 Redis 区别于其他缓存数据库的优点之一(比如 Memcached 就不具备持久化功能)。Redis 的数据持久化有三种方式。
通常情况下,关系型数据库(如 MySQL)的日志都是“写前日志”(Write Ahead Log, WAL),也就是说,在实际写数据之前,先把修改的数据记到日志文件中,以便当出现故障时进行恢复,比如 MySQL 的 redo log(重做日志),记录的就是修改后的数据。
而 AOF 里记录的是 Redis 收到的每一条命令,这些命令是以文本形式保存的,不同的是,Redis 的 AOF 日志的记录顺序与传统关系型数据库正好相反,它是写后日志,“写后”是指 Redis 要先执行命令,把数据写入内存,然后再记录日志到文件。
Reids 为什么先执行命令,在把数据写入日志呢?
因为 ,Redis 在写入日志之前,不对命令进行语法检查;所以,只记录执行成功的命令,避免了出现记录错误命令的情况;并且,在命令执行完之后再记录,不会阻塞当前的写操作。
当然,这样做也会带来风险,比如:数据可能会丢失,如果 Redis 刚执行完命令,此时发生故障宕机,会导致这条命令存在丢失的风险。
可能阻塞其他操作: 虽然 AOF 是写后日志,避免阻塞当前命令的执行,但因为 AOF 日志也是在主线程中执行,所以当 Redis 把日志文件写入磁盘的时候,还是会阻塞后续的操作无法执行。
因为 AOF 日志记录的是操作命令,不是实际的数据,所以用 AOF 方法做故障恢复时,需要全量把日志都执行一遍,一旦日志非常多,势必会造成 Redis 的恢复操作缓慢。
为了解决这个问题,Redis 增加了 RDB 内存快照(所谓内存快照,就是将内存中的某一时刻状态以数据的形式记录在磁盘中)的操作,它即可以保证可靠性,又能在宕机时实现快速恢复。
和 AOF 不同的是,RDB 记录 Redis 某一时刻的数据,而不是操作,所以在做数据恢复时候,只需要直接把 RDB 文件读入内存,完成快速恢复。
因为 Redis 的单线程模型决定了它所有操作都要尽量避免阻塞主线程,所以对于 RDB 快照也不例外,这关系到是否会降低 Redis 的性能。
为了解决这个问题,Redis 提供了两个命令来生成 RDB 快照文件,分别是 save 和 bgsave。save 命令在主线程中执行,会导致阻塞。而 bgsave 命令则会创建一个子进程,用于写入 RDB 文件的操作,避免了对主线程的阻塞,这也是 Redis RDB 的默认配置。
如果在执行快照的过程中,数据如果能被修改或者不能被修改都会带来什么影响?
如果此时可以执行写操作:意味着 Redis 还能正常处理写操作,就可能出现正在执行快照的数据是已经被修改了的情况;
如果此时不可以执行写操作:意味着 Redis 的所有写操作都得等到快照执行完成之后才能执行,那么就又出现了阻塞主线程的问题。
那 Redis 是如何解决这个问题的呢? 它利用了 bgsave 的子进程,具体操作如下:
如果主线程执行读操作,则主线程和 bgsave 子进程互相不影响;
如果主线程执行写操作,则被修改的数据会复制一份副本,然后 bgsave 子进程会把该副本数据写入 RDB 文件,在这个过程中,主线程仍然可以直接修改原来的数据。
要注意,Redis 对 RDB 的执行频率非常重要,因为这会影响快照数据的完整性以及 Redis 的稳定性,所以在 Redis 4.0 后,增加了 AOF 和 RDB 混合的数据持久化机制: 把数据以 RDB 的方式写入文件,再将后续的操作命令以 AOF 的格式存入文件,既保证了 Redis 重启速度,又降低数据丢失风险。
我们来总结一下,当面试官问你“Redis 是如何实现数据不丢失的”时,你首先要意识到这是在考察你对 Redis 数据持久化知识的掌握程度,那么你的回答思路是:先说明 Redis 有几种持久化的方式,然后分析 AOF 和 RDB 的原理以及存在的问题,最后分析一下 Redis 4.0 版本之后的持久化机制。
高可用的 Redis 的三种模式:
这是 Redis 高可用服务的最基础的保证,实现方案就是将从前的一台 Redis 服务器,同步数据到多台从 Redis 服务器上,即一主多从的模式,这样我们就可以对 Redis 做读写分离了,来承载更多的并发操作,这里和 MySQL 的主从复制原理上是一样的。
在使用 Redis 主从服务的时候,会有一个问题,就是当 Redis 的主从服务器出现故障宕机时,需要手动进行恢复,为了解决这个问题,Redis 增加了哨兵模式(因为哨兵模式做到了可以监控主从服务器,并且提供自动容灾恢复的功能)。
Redis Cluster 是一种分布式去中心化的运行模式,是在 Redis 3.0 版本中推出的 Redis 集群方案,它将数据分布在不同的服务器上,以此来降低系统对单主节点的依赖,从而提高 Redis 服务的读写性能。
Redis Cluster 方案采用哈希槽(Hash Slot),来处理数据和实例之间的映射关系。在 Redis Cluster 方案中,一个切片集群共有 16384 个哈希槽,这些哈希槽类似于数据分区,每个键值对都会根据它的 key,被映射到一个哈希槽中,具体执行过程分为两大步。
根据键值对的 key,按照 CRC16 算法计算一个 16 bit 的值。
再用 16bit 值对 16384 取模,得到 0~16383 范围内的模数,每个模数代表一个相应编号的哈希槽。
剩下的一个问题就是,这些哈希槽怎么被映射到具体的 Redis 实例上的呢?有两种方案。
平均分配: 在使用 cluster create 命令创建 Redis 集群时,Redis 会自动把所有哈希槽平均分布到集群实例上。比如集群中有 9 个实例,则每个实例上槽的个数为 16384/9 个。
手动分配: 可以使用 cluster meet 命令手动建立实例间的连接,组成集群,再使用 cluster addslots 命令,指定每个实例上的哈希槽个数,为了方便你的理解,我通过一张图来解释数据、哈希槽,以及实例三者的映射分布关系。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。