赞
踩
目录
一、解决报错ModuleNotFoundError: No module named ‘tensorflow.examples
二、解决报错ModuleNotFoundError: No module named ‘tensorflow.contrib‘
三、安装onnx报错assert CMAKE, ‘Could not find “cmake“ executable!‘
四、ImportError: cannot import name 'builder' from 'google.protobuf.internal'
五、解决ModuleNotFoundError: No module named 'sklearn'
六、解决AttributeError: module ‘torch._C‘ has no attribute ‘_cuda_setDevice‘
七、解决ImportError: Missing optional dependency 'pytables'. Use pip or conda to install pytables.
八、解决AttributeError: module ‘distutils’ has no attribute ‘version’.
注意:MNIST数据集下载完成后不要解压,直接放入mnist_data文件夹下读取即可。
问题:我在用tensorflow做mnist数据集案例,报错了。
原因:tensorflow中没有examples。
解决方法:(1)首先找到对应tensorflow的文件,我的是在D:\python3\Lib\site-packages\tensorflow(python的安装目录),进入tensorflow文件夹,发现没有examples文件夹。
我们可以进入github下载:mirrors / tensorflow / tensorflow · GitCode。
(2)下载完成后将\tensorflow-master\tensorflow\目录下的examples文件夹复制到本地tensorflow文件夹中,然后在重新运行代码即可。
(3)之后发现还是没能解决问题,发现examples中缺少tutorials文件夹。在官方的github中没发现这个文件,在其他博主那里下载到了该文件。
下载地址: 百度网盘 请输入提取码
提取码:cxy7
(4)但是依旧没有解决问题…
前面博主使用的应该是tf1.0的版本。参考其他博主的方法解决了问题。
input_data.py文件内容放在下面,需要的自取。
- # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Functions for downloading and reading MNIST data (deprecated).
- This module and all its submodules are deprecated.
- """
-
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
-
- import collections
- import gzip
- import os
-
- import numpy
- from six.moves import urllib
- from six.moves import xrange # pylint: disable=redefined-builtin
-
- from tensorflow.python.framework import dtypes
- from tensorflow.python.framework import random_seed
- from tensorflow.python.platform import gfile
- from tensorflow.python.util.deprecation import deprecated
-
- _Datasets = collections.namedtuple('_Datasets', ['train', 'validation', 'test'])
-
- # CVDF mirror of http://yann.lecun.com/exdb/mnist/
- DEFAULT_SOURCE_URL = 'https://storage.googleapis.com/cvdf-datasets/mnist/'
-
-
- def _read32(bytestream):
- dt = numpy.dtype(numpy.uint32).newbyteorder('>')
- return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
-
-
- @deprecated(None, 'Please use tf.data to implement this functionality.')
- def _extract_images(f):
- """Extract the images into a 4D uint8 numpy array [index, y, x, depth].
- Args:
- f: A file object that can be passed into a gzip reader.
- Returns:
- data: A 4D uint8 numpy array [index, y, x, depth].
- Raises:
- ValueError: If the bytestream does not start with 2051.
- """
- print('Extracting', f.name)
- with gzip.GzipFile(fileobj=f) as bytestream:
- magic = _read32(bytestream)
- if magic != 2051:
- raise ValueError('Invalid magic number %d in MNIST image file: %s' %
- (magic, f.name))
- num_images = _read32(bytestream)
- rows = _read32(bytestream)
- cols = _read32(bytestream)
- buf = bytestream.read(rows * cols * num_images)
- data = numpy.frombuffer(buf, dtype=numpy.uint8)
- data = data.reshape(num_images, rows, cols, 1)
- return data
-
-
- @deprecated(None, 'Please use tf.one_hot on tensors.')
- def _dense_to_one_hot(labels_dense, num_classes):
- """Convert class labels from scalars to one-hot vectors."""
- num_labels = labels_dense.shape[0]
- index_offset = numpy.arange(num_labels) * num_classes
- labels_one_hot = numpy.zeros((num_labels, num_classes))
- labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
- return labels_one_hot
-
-
- @deprecated(None, 'Please use tf.data to implement this functionality.')
- def _extract_labels(f, one_hot=False, num_classes=10):
- """Extract the labels into a 1D uint8 numpy array [index].
- Args:
- f: A file object that can be passed into a gzip reader.
- one_hot: Does one hot encoding for the result.
- num_classes: Number of classes for the one hot encoding.
- Returns:
- labels: a 1D uint8 numpy array.
- Raises:
- ValueError: If the bystream doesn't start with 2049.
- """
- print('Extracting', f.name)
- with gzip.GzipFile(fileobj=f) as bytestream:
- magic = _read32(bytestream)
- if magic != 2049:
- raise ValueError('Invalid magic number %d in MNIST label file: %s' %
- (magic, f.name))
- num_items = _read32(bytestream)
- buf = bytestream.read(num_items)
- labels = numpy.frombuffer(buf, dtype=numpy.uint8)
- if one_hot:
- return _dense_to_one_hot(labels, num_classes)
- return labels
-
-
- class _DataSet(object):
- """Container class for a _DataSet (deprecated).
- THIS CLASS IS DEPRECATED.
- """
-
- @deprecated(None, 'Please use alternatives such as official/mnist/_DataSet.py'
- ' from tensorflow/models.')
- def __init__(self,
- images,
- labels,
- fake_data=False,
- one_hot=False,
- dtype=dtypes.float32,
- reshape=True,
- seed=None):
- """Construct a _DataSet.
- one_hot arg is used only if fake_data is true. `dtype` can be either
- `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
- `[0, 1]`. Seed arg provides for convenient deterministic testing.
- Args:
- images: The images
- labels: The labels
- fake_data: Ignore inages and labels, use fake data.
- one_hot: Bool, return the labels as one hot vectors (if True) or ints (if
- False).
- dtype: Output image dtype. One of [uint8, float32]. `uint8` output has
- range [0,255]. float32 output has range [0,1].
- reshape: Bool. If True returned images are returned flattened to vectors.
- seed: The random seed to use.
- """
- seed1, seed2 = random_seed.get_seed(seed)
- # If op level seed is not set, use whatever graph level seed is returned
- numpy.random.seed(seed1 if seed is None else seed2)
- dtype = dtypes.as_dtype(dtype).base_dtype
- if dtype not in (dtypes.uint8, dtypes.float32):
- raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
- dtype)
- if fake_data:
- self._num_examples = 10000
- self.one_hot = one_hot
- else:
- assert images.shape[0] == labels.shape[0], (
- 'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
- self._num_examples = images.shape[0]
-
- # Convert shape from [num examples, rows, columns, depth]
- # to [num examples, rows*columns] (assuming depth == 1)
- if reshape:
- assert images.shape[3] == 1
- images = images.reshape(images.shape[0],
- images.shape[1] * images.shape[2])
- if dtype == dtypes.float32:
- # Convert from [0, 255] -> [0.0, 1.0].
- images = images.astype(numpy.float32)
- images = numpy.multiply(images, 1.0 / 255.0)
- self._images = images
- self._labels = labels
- self._epochs_completed = 0
- self._index_in_epoch = 0
-
- @property
- def images(self):
- return self._images
-
- @property
- def labels(self):
- return self._labels
-
- @property
- def num_examples(self):
- return self._num_examples
-
- @property
- def epochs_completed(self):
- return self._epochs_completed
-
- def next_batch(self, batch_size, fake_data=False, shuffle=True):
- """Return the next `batch_size` examples from this data set."""
- if fake_data:
- fake_image = [1] * 784
- if self.one_hot:
- fake_label = [1] + [0] * 9
- else:
- fake_label = 0
- return [fake_image for _ in xrange(batch_size)
- ], [fake_label for _ in xrange(batch_size)]
- start = self._index_in_epoch
- # Shuffle for the first epoch
- if self._epochs_completed == 0 and start == 0 and shuffle:
- perm0 = numpy.arange(self._num_examples)
- numpy.random.shuffle(perm0)
- self._images = self.images[perm0]
- self._labels = self.labels[perm0]
- # Go to the next epoch
- if start + batch_size > self._num_examples:
- # Finished epoch
- self._epochs_completed += 1
- # Get the rest examples in this epoch
- rest_num_examples = self._num_examples - start
- images_rest_part = self._images[start:self._num_examples]
- labels_rest_part = self._labels[start:self._num_examples]
- # Shuffle the data
- if shuffle:
- perm = numpy.arange(self._num_examples)
- numpy.random.shuffle(perm)
- self._images = self.images[perm]
- self._labels = self.labels[perm]
- # Start next epoch
- start = 0
- self._index_in_epoch = batch_size - rest_num_examples
- end = self._index_in_epoch
- images_new_part = self._images[start:end]
- labels_new_part = self._labels[start:end]
- return numpy.concatenate((images_rest_part, images_new_part),
- axis=0), numpy.concatenate(
- (labels_rest_part, labels_new_part), axis=0)
- else:
- self._index_in_epoch += batch_size
- end = self._index_in_epoch
- return self._images[start:end], self._labels[start:end]
-
-
- @deprecated(None, 'Please write your own downloading logic.')
- def _maybe_download(filename, work_directory, source_url):
- """Download the data from source url, unless it's already here.
- Args:
- filename: string, name of the file in the directory.
- work_directory: string, path to working directory.
- source_url: url to download from if file doesn't exist.
- Returns:
- Path to resulting file.
- """
- if not gfile.Exists(work_directory):
- gfile.MakeDirs(work_directory)
- filepath = os.path.join(work_directory, filename)
- if not gfile.Exists(filepath):
- urllib.request.urlretrieve(source_url, filepath)
- with gfile.GFile(filepath) as f:
- size = f.size()
- print('Successfully downloaded', filename, size, 'bytes.')
- return filepath
-
-
- @deprecated(None, 'Please use alternatives such as:'
- ' tensorflow_datasets.load(\'mnist\')')
- def read_data_sets(train_dir,
- fake_data=False,
- one_hot=False,
- dtype=dtypes.float32,
- reshape=True,
- validation_size=5000,
- seed=None,
- source_url=DEFAULT_SOURCE_URL):
- if fake_data:
-
- def fake():
- return _DataSet([], [],
- fake_data=True,
- one_hot=one_hot,
- dtype=dtype,
- seed=seed)
-
- train = fake()
- validation = fake()
- test = fake()
- return _Datasets(train=train, validation=validation, test=test)
-
- if not source_url: # empty string check
- source_url = DEFAULT_SOURCE_URL
-
- train_images_file = 'train-images-idx3-ubyte.gz'
- train_labels_file = 'train-labels-idx1-ubyte.gz'
- test_images_file = 't10k-images-idx3-ubyte.gz'
- test_labels_file = 't10k-labels-idx1-ubyte.gz'
-
- local_file = _maybe_download(train_images_file, train_dir,
- source_url + train_images_file)
- with gfile.Open(local_file, 'rb') as f:
- train_images = _extract_images(f)
-
- local_file = _maybe_download(train_labels_file, train_dir,
- source_url + train_labels_file)
- with gfile.Open(local_file, 'rb') as f:
- train_labels = _extract_labels(f, one_hot=one_hot)
-
- local_file = _maybe_download(test_images_file, train_dir,
- source_url + test_images_file)
- with gfile.Open(local_file, 'rb') as f:
- test_images = _extract_images(f)
-
- local_file = _maybe_download(test_labels_file, train_dir,
- source_url + test_labels_file)
- with gfile.Open(local_file, 'rb') as f:
- test_labels = _extract_labels(f, one_hot=one_hot)
-
- if not 0 <= validation_size <= len(train_images):
- raise ValueError(
- 'Validation size should be between 0 and {}. Received: {}.'.format(
- len(train_images), validation_size))
-
- validation_images = train_images[:validation_size]
- validation_labels = train_labels[:validation_size]
- train_images = train_images[validation_size:]
- train_labels = train_labels[validation_size:]
-
- options = dict(dtype=dtype, reshape=reshape, seed=seed)
-
- train = _DataSet(train_images, train_labels, **options)
- validation = _DataSet(validation_images, validation_labels, **options)
- test = _DataSet(test_images, test_labels, **options)
-
- return _Datasets(train=train, validation=validation, test=test)
-
-
问题:在TensorFlow2.x版本已经不能使用contrib包
经过百度,查得:安装onnx需要protobuf编译所以安装前需要安装protobuf。
问题:当运行torch转onnx的代码时,出现ImportError: cannot import name 'builder' from 'google.protobuf.internal'
,如下图:
原因:由于使用的google.protobuf
版本太低而引起的。在较新的版本中,builder
模块已经移动到了google.protobuf
包中,而不再在google.protobuf.internal
中。
解决办法:升级protobuf库
pip install --upgrade protobuf
问题:sklearn第三方库安装失败
原因:查看别人库的列表,发现sklearn的包名是scikit-learn
解决:安装scikit-learn,
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-learn
网上查询原因:说我安装的torch是适合CPU的,而不是适合GPU的。于是我查询pytorch版本情况,代码如下,
- import torch
- torch.cuda.is_available()
结果是False。
显而易见,环境使用的是CPU版本的torch,但是我仔细检查了一下我安装的命令,如下
解决:下载三个安装包,适合GPU版本的,
然后分别pip install 他们,这样就能够安装适合GPU版本的torch了。
问题:运行py文件报错
解决历程:按照提示安装pytables,"pip install pytables"安装失败,然后试了"pip install tables"安装上了。
重新运行代码,发现就不报错了。
问题: AttributeError: module ‘distutils’ has no attribute ‘version’.
解决: setuptools版本问题”,版本过高导致的问题;setuptools版本
然后重新运行了代码,发现没有报错了。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。