赞
踩
在pytorch中,可以使用torch.cosine_similarity函数对两个向量或者张量计算余弦相似度。先看一下pytorch源码对该函数的定义:
- class CosineSimilarity(Module):
- r"""Returns cosine similarity between :math:`x_1` and :math:`x_2`, computed along dim.
- .. math ::
- \text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}.
- Args:
- dim (int, optional): Dimension where cosine similarity is computed. Default: 1
- eps (float, optional): Small value to avoid division by zero.
- Default: 1e-8
- Shape:
- - Input1: :math:`(\ast_1, D, \ast_2)` where D is at position `dim`
- - Input2: :math:`(\ast_1, D, \ast_2)`, same shape as the Input1
- - Output: :math:`(\ast_1, \ast_2)`
- Examples::
- >>> input1 = torch.randn(100, 128)
- >>> input2 = torch.randn(100, 128)
- >>> cos = nn.CosineSimilarity(dim=1, eps=1e-6)
- >>> output = cos(input1, input2)
- """
- __constants__ = ['dim', 'eps']
-
- def __init__(self, dim=1, eps=1e-8):
- super(CosineSimilarity, self).__init__()
- self.dim = dim
- self.eps = eps
-
- def forward(self, x1, x2):
- return F.cosine_similarity(x1, x2, self.dim, self.eps)
可以看到该函数一共有四个参数:
看一下例子:
- import torch
-
- x = torch.FloatTensor(torch.rand([10]))
- print('x', x)
- y = torch.FloatTensor(torch.rand([10]))
- print('y', y)
-
- similarity = torch.cosine_similarity(x, y, dim=0)
- print('similarity', similarity)
- x tensor([0.2817, 0.6858, 0.1820, 0.7357, 0.7625, 0.3569, 0.4781, 0.8485, 0.1385,
- 0.5654])
- y tensor([0.3366, 0.8959, 0.7776, 0.2475, 0.9202, 0.2845, 0.7284, 0.8150, 0.2577,
- 0.0085])
- similarity tensor(0.8502)
再看一个例子,给定一个张量,计算多个张量与它的余弦相似度,并将计算得到的余弦相似度标准化。
- import torch
-
-
- def get_att_dis(target, behaviored):
-
- attention_distribution = []
-
- for i in range(behaviored.size(0)):
- attention_score = torch.cosine_similarity(target, behaviored[i].view(1, -1)) # 计算每一个元素与给定元素的余弦相似度
- attention_distribution.append(attention_score)
- attention_distribution = torch.Tensor(attention_distribution)
-
- return attention_distribution / torch.sum(attention_distribution, 0) # 标准化
-
-
- a = torch.FloatTensor(torch.rand(1, 10))
- print('a', a)
- b = torch.FloatTensor(torch.rand(3, 10))
- print('b', b)
-
- similarity = get_att_dis(target=a, behaviored=b)
- print('similarity', similarity)
- a tensor([[0.9255, 0.2194, 0.8370, 0.5346, 0.5152, 0.4645, 0.4926, 0.9882, 0.2783,
- 0.9258]])
- b tensor([[0.6874, 0.4054, 0.5739, 0.8017, 0.9861, 0.0154, 0.8513, 0.8427, 0.6669,
- 0.0694],
- [0.1720, 0.6793, 0.7764, 0.4583, 0.8167, 0.2718, 0.9686, 0.9301, 0.2421,
- 0.0811],
- [0.2336, 0.4783, 0.5576, 0.6518, 0.9943, 0.6766, 0.0044, 0.7935, 0.2098,
- 0.0719]])
- similarity tensor([0.3448, 0.3318, 0.3234])
未完待续...
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。