赞
踩
使用transform
加载数据集,查看数据集的属性
将图片转换成tensor类型
dataset_transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor()
])
train_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,transform= dataset_transform,download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,transform= dataset_transform,download=True)
print(test_set[0])
将该数据的数据显示在tensorboard中
Dataloader
import torchvision from torch.utils.data import DataLoader #准备测试数据集 test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True) test_loader = DataLoader(dataset = test_data,batch_size=4,shuffle=True,num_workers=0,drop_last=False) #测试数据集中第一张图片集 img,target = test_data[0] print(img.shape) print(target) for data in test_loader: imgs,targets = data print(imgs.shape) print(targets)
出现以上问题,需要将numberworks设置为0
drop_last 当取数据有余数时,是舍去还是保留
import torchvision from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter #准备测试数据集 test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor()) test_loader = DataLoader(dataset = test_data,batch_size=64,shuffle=True,num_workers=0,drop_last=True) #测试数据集中第一张图片集 img,target = test_data[0] print(img.shape) print(target) writer = SummaryWriter("DataLodaer") #shuffle 为True 两次结果不一样 for epoch in range(2): step = 0 for data in test_loader: imgs,targets = data # print(imgs.shape) # print(targets) writer.add_images("Epoch:{}".format(epoch),imgs,step) step = step+1 writer.close()
神经网络
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。