赞
踩
在拥有多卡的GPU服务器上面跑程序的时候,当迭代次数或者epoch足够大的时候,我们可以使用nn.DataParallel函数来用多个GPU来加速训练。
比如我们现在搭了一个目标检测的模型,以YOLOv4为例,下面代码参考Github上面的开源代码,换成其它网络也一样。
import math
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
#---------------------------------------------------#
# CSPdarknet的结构块的组成部分
# 内部堆叠的残差块
#---------------------------------------------------#
class Resblock(nn.Module):
def __init__(self, channels, hidden_channels=None):
super(Resblock, self).__init__()
if hidden_channels is None:
hidden_channels = channels
self.block = nn.Sequential(
BasicConv(channels, hidden_channels, 1),
BasicConv(hidden_channels, channels, 3)
)
def forward(self, x):
return x + self.block(x)
#--------------------------------------------------------------------#
# CSPdarknet的结构块
# 首先利用ZeroPadding2D和一个步长为2x2的卷积块进行高和宽的压缩
# 然后建立一个大的残差边shortconv、这个大残差边绕过了很多的残差结构
# 主干部分会对num_blocks进行循环,循环内部是残差结构。
# 对于整个CSPdarknet的结构块,就是一个大残差块+内部多个小残差块
#--------------------------------------------------------------------#
class Resblock_body(nn.Module):
def __init__(self, in_channels, out_channels, num_blocks, first):
super(Resblock_body, self).__init__()
#----------------------------------------------------------------#
# 利用一个步长为2x2的卷积块进行高和宽的压缩
#----------------------------------------------------------------#
self.downsample_conv = BasicConv(
in_channels, out_channels, 3, stride=2)
if first:
#--------------------------------------------------------------------------#
# 然后建立一个大的残差边self.split_conv0、这个大残差边绕过了很多的残差结构
#--------------------------------------------------------------------------#
self.split_conv0 = BasicConv(out_channels, out_channels, 1)
#----------------------------------------------------------------#
# 主干部分会对num_blocks进行循环,循环内部是残差结构。
#----------------------------------------------------------------#
self.split_conv1 = BasicConv(out_channels, out_channels, 1)
self.blocks_conv = nn.Sequential(
Resblock(channels=out_channels,
hidden_channels=out_channels // 2),
BasicConv(out_channels, out_channels, 1)
)
self.concat_conv = BasicConv(out_channels * 2, out_channels, 1)
else:
#--------------------------------------------------------------------------#
# 然后建立一个大的残差边self.split_conv0、这个大残差边绕过了很多的残差结构
#--------------------------------------------------------------------------#
self.split_conv0 = BasicConv(out_channels, out_channels // 2, 1)
#----------------------------------------------------------------#
# 主干部分会对num_blocks进行循环,循环内部是残差结构。
#----------------------------------------------------------------#
self.split_conv1 = BasicConv(out_channels, out_channels // 2, 1)
self.blocks_conv = nn.Sequential(
*[Resblock(out_channels // 2) for _ in range(num_blocks)],
BasicConv(out_channels // 2, out_channels // 2, 1)
)
self.concat_conv = BasicConv(out_channels, out_channels, 1)
def forward(self, x):
x = self.downsample_conv(x)
x0 = self.split_conv0(x)
x1 = self.split_conv1(x)
x1 = self.blocks_conv(x1)
#------------------------------------#
# 将大残差边再堆叠回来
#------------------------------------#
x = torch.cat([x1, x0], dim=1)
#------------------------------------#
# 最后对通道数进行整合
#------------------------------------#
x = self.concat_conv(x)
return x
#---------------------------------------------------#
# CSPdarknet53 的主体部分
# 输入为一张416x416x3的图片
# 输出为三个有效特征层
#---------------------------------------------------#
class CSPDarkNet(nn.Module):
def __init__(self, layers):
super(CSPDarkNet, self).__init__()
self.inplanes = 32
# 416,416,3 -> 416,416,32
self.conv1 = BasicConv(3, self.inplanes, kernel_size=3, stride=1)
# self.conv1 = BasicConv_AconC(self.inplanes)
# self.conv1 = BasicConv_AconC(3, self.inplanes, kernel_size=3, stride=1)
# self.conv1 = dwcConv_Mish(3, self.inplanes)
self.feature_channels = [64, 128, 256, 512, 1024]
self.stages = nn.ModuleList([
# 416,416,32 -> 208,208,64
Resblock_body(self.inplanes, self.feature_channels[
0], layers[0], first=True),
# 208,208,64 -> 104,104,128
Resblock_body(self.feature_channels[0], self.feature_channels[
1], layers[1], first=False),
# 104,104,128 -> 52,52,256
Resblock_body(self.feature_channels[1], self.feature_channels[
2], layers[2], first=False),
# 52,52,256 -> 26,26,512
Resblock_body(self.feature_channels[2], self.feature_channels[
3], layers[3], first=False),
# 26,26,512 -> 13,13,1024
Resblock_body(self.feature_channels[3], self.feature_channels[
4], layers[4], first=False)
])
self.num_features = 1
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, x):
x = self.conv1(x)
print("conv1:",x.shape)
x = self.stages[0](x)
print("resblock_1:",x.shape)
x = self.stages[1](x)
print("resblock_2:",x.shape)
out3 = self.stages[2](x)
print("resblock_3:",out3.shape)
out4 = self.stages[3](out3)
print("resblock_4:",out4.shape)
out5 = self.stages[4](out4)
print("resblock_5:",out5.shape)
return out3, out4, out5
def darknet53(pretrained, **kwargs):
model = CSPDarkNet([1, 2, 8, 8, 4])
# model = CSPDarkNet([1, 1, 1, 1, 1])
if pretrained:
if isinstance(pretrained, str):
model.load_state_dict(torch.load(pretrained))
else:
raise Exception(
"darknet request a pretrained path. got [{}]".format(pretrained))
return model
def conv2d(filter_in, filter_out, kernel_size, stride=1):
pad = (kernel_size - 1) // 2 if kernel_size else 0
return nn.Sequential(OrderedDict([
("conv", nn.Conv2d(filter_in, filter_out, kernel_size=kernel_size, stride=stride, padding=pad, bias=False)),
("bn", nn.BatchNorm2d(filter_out)),
("relu", nn.LeakyReLU(0.1)),
]))
class SpatialPyramidPooling(nn.Module):
def __init__(self, pool_sizes=[5, 9, 13]):
super(SpatialPyramidPooling, self).__init__()
self.maxpools = nn.ModuleList([nn.MaxPool2d(pool_size, 1, pool_size//2) for pool_size in pool_sizes])
def forward(self, x):
features = [maxpool(x) for maxpool in self.maxpools[::-1]]
features = torch.cat(features + [x], dim=1)
return features
class Upsample(nn.Module):
def __init__(self, in_channels, out_channels):
super(Upsample, self).__init__()
self.upsample = nn.Sequential(
conv2d(in_channels, out_channels, 1),
nn.Upsample(scale_factor=2, mode='nearest')
)
def forward(self, x,):
x = self.upsample(x)
return x
def make_three_conv(filters_list, in_filters):
m = nn.Sequential(
conv2d(in_filters, filters_list[0], 1),
conv2d(filters_list[0], filters_list[1], 3),
conv2d(filters_list[1], filters_list[0], 1),
)
return m
def make_five_conv(filters_list, in_filters):
m = nn.Sequential(
conv2d(in_filters, filters_list[0], 1),
conv2d(filters_list[0], filters_list[1], 3),
conv2d(filters_list[1], filters_list[0], 1),
conv2d(filters_list[0], filters_list[1], 3),
conv2d(filters_list[1], filters_list[0], 1),
)
return m
def yolo_head(filters_list, in_filters):
m = nn.Sequential(
conv2d(in_filters, filters_list[0], 3),
nn.Conv2d(filters_list[0], filters_list[1], 1),
)
return m
class Yolo4(nn.Module):
def __init__(self, num_anchors, num_classes):
super(YoloBody, self).__init__()
#---------------------------------------------------#
# 52,52,256
# 26,26,512
# 13,13,1024
#---------------------------------------------------#
self.backbone = darknet53(None)
self.conv1 = make_three_conv([512,1024],1024)
self.SPP = SpatialPyramidPooling()
self.conv2 = make_three_conv([512,1024],2048)
self.upsample1 = Upsample(512,256)
self.conv_for_P4 = conv2d(512,256,1)
self.make_five_conv1 = make_five_conv([256, 512],512)
self.upsample2 = Upsample(256,128)
self.conv_for_P3 = conv2d(256,128,1)
self.make_five_conv2 = make_five_conv([128, 256],256)
# 3*(5+num_classes) = 3*(5+20) = 3*(4+1+20)=75
final_out_filter2 = num_anchors * (5 + num_classes)
self.yolo_head3 = yolo_head([256, final_out_filter2],128)
self.down_sample1 = conv2d(128,256,3,stride=2)
self.make_five_conv3 = make_five_conv([256, 512],512)
# 3*(5+num_classes) = 3*(5+20) = 3*(4+1+20)=75
final_out_filter1 = num_anchors * (5 + num_classes)
self.yolo_head2 = yolo_head([512, final_out_filter1],256)
self.down_sample2 = conv2d(256,512,3,stride=2)
self.make_five_conv4 = make_five_conv([512, 1024],1024)
# 3*(5+num_classes)=3*(5+20)=3*(4+1+20)=75
final_out_filter0 = num_anchors * (5 + num_classes)
self.yolo_head1 = yolo_head([1024, final_out_filter0],512)
def forward(self, x):
# backbone
x2, x1, x0 = self.backbone(x)
# 13,13,1024 -> 13,13,512 -> 13,13,1024 -> 13,13,512 -> 13,13,2048
P5 = self.conv1(x0)
P5 = self.SPP(P5)
# 13,13,2048 -> 13,13,512 -> 13,13,1024 -> 13,13,512
P5 = self.conv2(P5)
# 13,13,512 -> 13,13,256 -> 26,26,256
P5_upsample = self.upsample1(P5)
# 26,26,512 -> 26,26,256
P4 = self.conv_for_P4(x1)
# 26,26,256 + 26,26,256 -> 26,26,512
P4 = torch.cat([P4,P5_upsample],axis=1)
# 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256
P4 = self.make_five_conv1(P4)
# 26,26,256 -> 26,26,128 -> 52,52,128
P4_upsample = self.upsample2(P4)
# 52,52,256 -> 52,52,128
P3 = self.conv_for_P3(x2)
# 52,52,128 + 52,52,128 -> 52,52,256
P3 = torch.cat([P3,P4_upsample],axis=1)
# 52,52,256 -> 52,52,128 -> 52,52,256 -> 52,52,128 -> 52,52,256 -> 52,52,128
P3 = self.make_five_conv2(P3)
P3 = self.involution1(P3)
# 52,52,128 -> 26,26,256
P3_downsample = self.down_sample1(P3)
# 26,26,256 + 26,26,256 -> 26,26,512
P4 = torch.cat([P3_downsample,P4],axis=1)
# 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256
P4 = self.make_five_conv3(P4)
P4 = self.involution2(P4)
# 26,26,256 -> 13,13,512
P4_downsample = self.down_sample2(P4)
# 13,13,512 + 13,13,512 -> 13,13,1024
P5 = torch.cat([P4_downsample,P5],axis=1)
# 13,13,1024 -> 13,13,512 -> 13,13,1024 -> 13,13,512 -> 13,13,1024 -> 13,13,512
P5 = self.make_five_conv4(P5)
P5 = self.involution3(P5)
#---------------------------------------------------#
# y3=(batch_size,75,52,52)
#---------------------------------------------------#
out2 = self.yolo_head3(P3)
#---------------------------------------------------#
# y2=(batch_size,75,26,26)
#---------------------------------------------------#
out1 = self.yolo_head2(P4)
#---------------------------------------------------#
# y1=(batch_size,75,13,13)
#---------------------------------------------------#
out0 = self.yolo_head1(P5)
return out0, out1, out2
x=torch.rand([1,3,608,608])
Yolo4=Yolo4(9,3)
out=YoloBody.forward(x)
现在如果我么的服务器有4张显卡,那么我们就可以用多GPU的训练方式加快训练速度。
具体做法也很简单,只需要用nn.DataParallel函数将定义的模型使用多GPU来训练。只要把数据放在GPU设备上,训练时就可以多卡训练了。
需要添加的代码如下:
import torch.backends.cudnn as cudnn
# os.environ['CUDA_VISIBLE_DEVICES'] = '2,3' # 需要用两张卡跑则加上,2、3为GPU编号,可指定
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Yolo4(num_anchors=9, num_classes=3)
net = torch.nn.DataParallel(model)
cudnn.benchmark = True # 听说设置benchmark=True可以提升训练效率,去掉也不影响
net = net.cuda() # 或者用net=net.to(device)也可以,这时device得定义
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。