当前位置:   article > 正文

单机多GPU训练神经网络模型_适合单机训练的 模型有哪些

适合单机训练的 模型有哪些

在拥有多卡的GPU服务器上面跑程序的时候,当迭代次数或者epoch足够大的时候,我们可以使用nn.DataParallel函数来用多个GPU来加速训练。

比如我们现在搭了一个目标检测的模型,以YOLOv4为例,下面代码参考Github上面的开源代码,换成其它网络也一样。

YOLOv4网络模型

import math
from collections import OrderedDict

import torch
import torch.nn as nn
import torch.nn.functional as F
#---------------------------------------------------#
#   CSPdarknet的结构块的组成部分
#   内部堆叠的残差块
#---------------------------------------------------#
class Resblock(nn.Module):

    def __init__(self, channels, hidden_channels=None):
        super(Resblock, self).__init__()

        if hidden_channels is None:
            hidden_channels = channels

        self.block = nn.Sequential(
            BasicConv(channels, hidden_channels, 1),
            BasicConv(hidden_channels, channels, 3)
        )

    def forward(self, x):
        return x + self.block(x)
#--------------------------------------------------------------------#
#   CSPdarknet的结构块
#   首先利用ZeroPadding2D和一个步长为2x2的卷积块进行高和宽的压缩
#   然后建立一个大的残差边shortconv、这个大残差边绕过了很多的残差结构
#   主干部分会对num_blocks进行循环,循环内部是残差结构。
#   对于整个CSPdarknet的结构块,就是一个大残差块+内部多个小残差块
#--------------------------------------------------------------------#
class Resblock_body(nn.Module):

    def __init__(self, in_channels, out_channels, num_blocks, first):
        super(Resblock_body, self).__init__()
        #----------------------------------------------------------------#
        #   利用一个步长为2x2的卷积块进行高和宽的压缩
        #----------------------------------------------------------------#
        self.downsample_conv = BasicConv(
            in_channels, out_channels, 3, stride=2)

        if first:
            #--------------------------------------------------------------------------#
            #   然后建立一个大的残差边self.split_conv0、这个大残差边绕过了很多的残差结构
            #--------------------------------------------------------------------------#
            self.split_conv0 = BasicConv(out_channels, out_channels, 1)

            #----------------------------------------------------------------#
            #   主干部分会对num_blocks进行循环,循环内部是残差结构。
            #----------------------------------------------------------------#
            self.split_conv1 = BasicConv(out_channels, out_channels, 1)
            self.blocks_conv = nn.Sequential(
                Resblock(channels=out_channels,
                         hidden_channels=out_channels // 2),
                BasicConv(out_channels, out_channels, 1)
            )

            self.concat_conv = BasicConv(out_channels * 2, out_channels, 1)
        else:
            #--------------------------------------------------------------------------#
            #   然后建立一个大的残差边self.split_conv0、这个大残差边绕过了很多的残差结构
            #--------------------------------------------------------------------------#
            self.split_conv0 = BasicConv(out_channels, out_channels // 2, 1)

            #----------------------------------------------------------------#
            #   主干部分会对num_blocks进行循环,循环内部是残差结构。
            #----------------------------------------------------------------#
            self.split_conv1 = BasicConv(out_channels, out_channels // 2, 1)
            self.blocks_conv = nn.Sequential(
                *[Resblock(out_channels // 2) for _ in range(num_blocks)],
                BasicConv(out_channels // 2, out_channels // 2, 1)
            )

            self.concat_conv = BasicConv(out_channels, out_channels, 1)

    def forward(self, x):
        x = self.downsample_conv(x)

        x0 = self.split_conv0(x)

        x1 = self.split_conv1(x)
        x1 = self.blocks_conv(x1)

        #------------------------------------#
        #   将大残差边再堆叠回来
        #------------------------------------#
        x = torch.cat([x1, x0], dim=1)
        #------------------------------------#
        #   最后对通道数进行整合
        #------------------------------------#
        x = self.concat_conv(x)

        return x
#---------------------------------------------------#
#   CSPdarknet53 的主体部分
#   输入为一张416x416x3的图片
#   输出为三个有效特征层
#---------------------------------------------------#
class CSPDarkNet(nn.Module):

    def __init__(self, layers):
        super(CSPDarkNet, self).__init__()
        self.inplanes = 32
        # 416,416,3 -> 416,416,32
        self.conv1 = BasicConv(3, self.inplanes, kernel_size=3, stride=1)
        # self.conv1 = BasicConv_AconC(self.inplanes)
        # self.conv1 = BasicConv_AconC(3, self.inplanes, kernel_size=3, stride=1)
        # self.conv1 = dwcConv_Mish(3, self.inplanes)
        self.feature_channels = [64, 128, 256, 512, 1024]

        self.stages = nn.ModuleList([
            # 416,416,32 -> 208,208,64
            Resblock_body(self.inplanes, self.feature_channels[
                          0], layers[0], first=True),
            # 208,208,64 -> 104,104,128
            Resblock_body(self.feature_channels[0], self.feature_channels[
                          1], layers[1], first=False),
            # 104,104,128 -> 52,52,256
            Resblock_body(self.feature_channels[1], self.feature_channels[
                          2], layers[2], first=False),
            # 52,52,256 -> 26,26,512
            Resblock_body(self.feature_channels[2], self.feature_channels[
                          3], layers[3], first=False),
            # 26,26,512 -> 13,13,1024
            Resblock_body(self.feature_channels[3], self.feature_channels[
                          4], layers[4], first=False)
        ])

        self.num_features = 1
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def forward(self, x):
        x = self.conv1(x)
        print("conv1:",x.shape)
        x = self.stages[0](x)
        print("resblock_1:",x.shape)
        x = self.stages[1](x)
        print("resblock_2:",x.shape)
        out3 = self.stages[2](x)
        print("resblock_3:",out3.shape)
        out4 = self.stages[3](out3)
        print("resblock_4:",out4.shape)
        out5 = self.stages[4](out4)
        print("resblock_5:",out5.shape)

        return out3, out4, out5
        
def darknet53(pretrained, **kwargs):
    model = CSPDarkNet([1, 2, 8, 8, 4])
    # model = CSPDarkNet([1, 1, 1, 1, 1])
    if pretrained:
        if isinstance(pretrained, str):
            model.load_state_dict(torch.load(pretrained))
        else:
            raise Exception(
                "darknet request a pretrained path. got [{}]".format(pretrained))
    return model

def conv2d(filter_in, filter_out, kernel_size, stride=1):
    pad = (kernel_size - 1) // 2 if kernel_size else 0
    return nn.Sequential(OrderedDict([
        ("conv", nn.Conv2d(filter_in, filter_out, kernel_size=kernel_size, stride=stride, padding=pad, bias=False)),
        ("bn", nn.BatchNorm2d(filter_out)),
        ("relu", nn.LeakyReLU(0.1)),
    ]))

class SpatialPyramidPooling(nn.Module):
    def __init__(self, pool_sizes=[5, 9, 13]):
        super(SpatialPyramidPooling, self).__init__()

        self.maxpools = nn.ModuleList([nn.MaxPool2d(pool_size, 1, pool_size//2) for pool_size in pool_sizes])

    def forward(self, x):
        features = [maxpool(x) for maxpool in self.maxpools[::-1]]
        features = torch.cat(features + [x], dim=1)

        return features


class Upsample(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Upsample, self).__init__()

        self.upsample = nn.Sequential(
            conv2d(in_channels, out_channels, 1),
            nn.Upsample(scale_factor=2, mode='nearest')
        )

    def forward(self, x,):
        x = self.upsample(x)
        return x

def make_three_conv(filters_list, in_filters):
    m = nn.Sequential(
        conv2d(in_filters, filters_list[0], 1),
        conv2d(filters_list[0], filters_list[1], 3),
        conv2d(filters_list[1], filters_list[0], 1),
    )
    return m

def make_five_conv(filters_list, in_filters):
    m = nn.Sequential(
        conv2d(in_filters, filters_list[0], 1),
        conv2d(filters_list[0], filters_list[1], 3),
        conv2d(filters_list[1], filters_list[0], 1),
        conv2d(filters_list[0], filters_list[1], 3),
        conv2d(filters_list[1], filters_list[0], 1),
    )
    return m

def yolo_head(filters_list, in_filters):
    m = nn.Sequential(
        conv2d(in_filters, filters_list[0], 3),
        nn.Conv2d(filters_list[0], filters_list[1], 1),
    )
    return m

class Yolo4(nn.Module):
    def __init__(self, num_anchors, num_classes):
        super(YoloBody, self).__init__()
        #---------------------------------------------------#   
        #   52,52,256
        #   26,26,512
        #   13,13,1024
        #---------------------------------------------------#
        self.backbone = darknet53(None)

        self.conv1 = make_three_conv([512,1024],1024)
        self.SPP = SpatialPyramidPooling()
        self.conv2 = make_three_conv([512,1024],2048)

        self.upsample1 = Upsample(512,256)
        self.conv_for_P4 = conv2d(512,256,1)
        self.make_five_conv1 = make_five_conv([256, 512],512)

        self.upsample2 = Upsample(256,128)
        self.conv_for_P3 = conv2d(256,128,1)
        self.make_five_conv2 = make_five_conv([128, 256],256)

        # 3*(5+num_classes) = 3*(5+20) = 3*(4+1+20)=75
        final_out_filter2 = num_anchors * (5 + num_classes)
        self.yolo_head3 = yolo_head([256, final_out_filter2],128)

        self.down_sample1 = conv2d(128,256,3,stride=2)
        self.make_five_conv3 = make_five_conv([256, 512],512)
        
        # 3*(5+num_classes) = 3*(5+20) = 3*(4+1+20)=75
        final_out_filter1 =  num_anchors * (5 + num_classes)
        self.yolo_head2 = yolo_head([512, final_out_filter1],256)

        self.down_sample2 = conv2d(256,512,3,stride=2)
        self.make_five_conv4 = make_five_conv([512, 1024],1024)

        # 3*(5+num_classes)=3*(5+20)=3*(4+1+20)=75
        final_out_filter0 =  num_anchors * (5 + num_classes)
        self.yolo_head1 = yolo_head([1024, final_out_filter0],512)

	def forward(self, x):
        #  backbone
        x2, x1, x0 = self.backbone(x)

        # 13,13,1024 -> 13,13,512 -> 13,13,1024 -> 13,13,512 -> 13,13,2048 
        P5 = self.conv1(x0)
        P5 = self.SPP(P5)
        # 13,13,2048 -> 13,13,512 -> 13,13,1024 -> 13,13,512
        P5 = self.conv2(P5)

        # 13,13,512 -> 13,13,256 -> 26,26,256
        P5_upsample = self.upsample1(P5)
        # 26,26,512 -> 26,26,256
        P4 = self.conv_for_P4(x1)
        # 26,26,256 + 26,26,256 -> 26,26,512
        P4 = torch.cat([P4,P5_upsample],axis=1)
        # 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256
        P4 = self.make_five_conv1(P4)

        # 26,26,256 -> 26,26,128 -> 52,52,128
        P4_upsample = self.upsample2(P4)
        # 52,52,256 -> 52,52,128
        P3 = self.conv_for_P3(x2)
        # 52,52,128 + 52,52,128 -> 52,52,256
        P3 = torch.cat([P3,P4_upsample],axis=1)
        # 52,52,256 -> 52,52,128 -> 52,52,256 -> 52,52,128 -> 52,52,256 -> 52,52,128
        P3 = self.make_five_conv2(P3)
        P3 = self.involution1(P3)

        # 52,52,128 -> 26,26,256
        P3_downsample = self.down_sample1(P3)
        # 26,26,256 + 26,26,256 -> 26,26,512
        P4 = torch.cat([P3_downsample,P4],axis=1)
        # 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256 -> 26,26,512 -> 26,26,256
        P4 = self.make_five_conv3(P4)
        P4 = self.involution2(P4)

        # 26,26,256 -> 13,13,512
        P4_downsample = self.down_sample2(P4)
        # 13,13,512 + 13,13,512 -> 13,13,1024
        P5 = torch.cat([P4_downsample,P5],axis=1)
        # 13,13,1024 -> 13,13,512 -> 13,13,1024 -> 13,13,512 -> 13,13,1024 -> 13,13,512
        P5 = self.make_five_conv4(P5)
        P5 = self.involution3(P5)

        #---------------------------------------------------#
        #   y3=(batch_size,75,52,52)
        #---------------------------------------------------#
        out2 = self.yolo_head3(P3)
        #---------------------------------------------------#
        #   y2=(batch_size,75,26,26)
        #---------------------------------------------------#
        out1 = self.yolo_head2(P4)
        #---------------------------------------------------#
        #   y1=(batch_size,75,13,13)
        #---------------------------------------------------#
        out0 = self.yolo_head1(P5)

        return out0, out1, out2

x=torch.rand([1,3,608,608])
Yolo4=Yolo4(9,3)
out=YoloBody.forward(x)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327

单机多卡训练

现在如果我么的服务器有4张显卡,那么我们就可以用多GPU的训练方式加快训练速度。
具体做法也很简单,只需要用nn.DataParallel函数将定义的模型使用多GPU来训练。只要把数据放在GPU设备上,训练时就可以多卡训练了。

需要添加的代码如下:

import torch.backends.cudnn as cudnn
# os.environ['CUDA_VISIBLE_DEVICES'] = '2,3'	# 需要用两张卡跑则加上,2、3为GPU编号,可指定
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = Yolo4(num_anchors=9, num_classes=3)
net = torch.nn.DataParallel(model)
cudnn.benchmark = True	# 听说设置benchmark=True可以提升训练效率,去掉也不影响
net = net.cuda()	# 或者用net=net.to(device)也可以,这时device得定义
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/blog/article/detail/53726
推荐阅读
相关标签
  

闽ICP备14008679号